Selected
slides
from ...

= Chapter 2
And Then There
Was Javadcript

Teaching Assistant
Typewritten Text
Selected
slides
from ...

JavaScript has good parts.

we'll get to them Ilater.

Teaching Assistant
Typewritten Text
... we'll get to them later.

Where do Bad Parts come from?

e Legacy
* Good Intentions
e Haste

* For the most part, the bad parts can be
avoilded.

* The problem with the bad parts isn’t that
they are useless.

Numbers

* Only one number type
No integer types
* 64-bit floating point
e [EEE-754 (aka “Doubl e”)

Teaching Assistant
Oval

Associative Law does not hold

(a + b)) +c ===a+ (b + c)
* Produces f al se for some values of a, b, cC.

* Integers under 9007199254740992
(9 quadrillion) are ok.

9007199254740992 ===
9007199254740992 + 1

(a +1) —1===a

Can be false.

Decimal fractions are approximate

a = 0.1;
b = 0. 2;
= 0. 3;
(a +b) +c ===a+ (b + c)

fal se

abs

acos
asin
atan
atan2
ceil
cos
exp

floor

Math object

log
max
min
pow
random
round
sin

sqrt

tan

Math object

e E function |l og2(x) {
 LN10 return Math. LORZE *
 LN2 Vat h. | og(x) ;

« LOGIOE }

 LOG2E

* SQRT1 2
. SQRT2

Teaching Assistant
Oval

NaN

e Special number: Not a Number

* Result of undefined or erroneous
operations

e Toxic: any arithmetic operation with NaN
as an input will have NaN as a result

 NaNis not equal to anything, including NaN
« NaN === NaN is fal se
« NaN I'== NaN is true

String

Strings

* A sequence of 0 or more 16-bit Unicode
characters

— UCS-2, not quite UTF-16
— No awareness of surrogate pairs

* No separate character type
— Characters are represented as strings with length of 1

* Strings are immutable
* Similar strings are equal (===

e String literals can use single or double quotes
with \ escapement.

e Use " for external strings.
e Use' for internal strings and characters.

+

+ can concatenate or add.

'$ o+ 1+ 12 === $12

'$' .concat('1").concat('?2")

Convert a number to a string

e Use number method (toString)

e Use String function

Str
Str

numtoString();
String(num,;

Convert a string to a number

e Use the Number function.
e Use the + prefix operator.

e Use the parselnt function.

num
num

Nunmber (str) ;
+Str,;

parselnt function

parsel nt (str, 10)

 Converts the value into a number.

* It stops at the first non-digit character.
parselnt ("12enm') === 12

* The radix (10) should always be used.
parselnt ("08") ===
parselnt ("08", 10) ===

String | engt h

* string. | engt h

* The | engt h property determines the
number of 16-bit characters in a string.

e Extended characters are counted as 2.

Array

Arrays

e Array inherits from Cbj ect.

* Indexes are converted to strings and used
as names for retrieving values.

* Very efficient for sparse arrays.
* Not very efficient in most other cases.

* One advantage: No need to provide a
length or type when creating an array.

| engt h

e Arrays, unlike objects, have a special | engt h
property.

e Itis always 1 larger than the highest integer
subscript.

e It allows use of the traditional f or statement.
for (I =0; I <a.length; 1 += 1) {

}

* Do not use f or i n with arrays

Array Literals

* An array literal uses []

It can contain any number of expressions,
separated by commas

nyList = ['oats', 'peas', 'beans'];
* New items can be appended
nyLi st[nyList.length] = '"barley';

 The dot notation should not be used with arrays.

concat
every

filter
forEach
indexOf
join
lastIndexOf

map

pop
push

Array methods

* reduce

* reduceRight

* reverse

e shift

* slice

* some

e splice

* toLocaleString
* toString

e unshift

sort

var n = [4, 8, 15, 16, 23, 42];
n.sort();
/[l ni1s [15, 16, 23, 4, 42, 8]

detfault sort 1S alphabetical.
beware. for numerically ascending:
var points = [40,100,1,5,25,10];
points.sort(function(a,b){return a-b});

Teaching Assistant
Typewritten Text
default sort is alphabetical.
beware. for numerically ascending:
var points = [40,100,1,5,25,10];
points.sort(function(a,b){return a-b});

Teaching Assistant
Typewritten Text

Deleting Elements

del et e array|[nunber]

* Removes the element, but leaves a hole in
the numbering.

array. splice(nunber, 1)

* Removes the element and renumbers all
the following elements.

Deleting Elements
myArray = ['a, 'b'", 'c¢c', 'd];
del ete nyArray| 1];
[/ ['a, undefined, 'c', "d']
nyArray.splice(l, 1);

/I [*a, ‘¢, 'd]

Arrays v Objects

e Use objects when the names are arbitrary
strings.

e Use arrays when the names are sequential
integers.

* Don't get confused by the term Associative
Array.

forward slashes on either end!
weird - not a string - a different type.

RegEkxp

INT (NI X00-\ XLE] |V (VN [\ X00-\ X2F]| [A\ x00-\ xIFAVNN/T)*\] [[~ x00-\x1F\NN/\[]) +)/ [gi m] */

Teaching Assistant
Rectangle

Teaching Assistant
Rectangle

Teaching Assistant
Typewritten Text
forward slashes on either end!
weird - not a string - a different type.

Falsy values

fal se

nul |

undef i ned

e "" (.empty string)
e 0

« NaN

* All other values (including all objects) are truthy.
"0" "fal se"

e Equal and not equal

* These operators can do type coercion

e It is always better to use === and ! ==,
which do not do type coercion.

Teaching Assistant
Typewritten Text

Evils of type coercion

== "'0 [l fal se
== " [l true
== "'0 [l true
false == 'fal se' [l fal se
false == "'0' [l true
false == undefined // fal se
fal se == nul | [l fal se
null == undefined // true

\t\r\n ' == [l true

Function

All values are objects

Except nul | and undef i ned.

nul |

A value that isn't anything

undef 1 ned

e A value that isn't even that.

* The default value for variables and
parameters.

e The value of missing members in objects.

Switch statement

sw tch (expression) {
case ';':
case ', ':
case '
punct uati on();
br eak;
def aul t:
noneOf TheAbove() ;

}

Selected slides from ...

Act 111
Function the Ultimate

Teaching Assistant
Typewritten Text
Selected slides from

function expression

) var addOne = tunction(x)
e function {

e optional name return - x+1;

5
* parameters
 Wrapped in parens
e Zero or more names

e Separated by , (comma)

* body
 Wrapped in curly braces

e Zero or more statements

Teaching Assistant
Typewritten Text
var addOne = function(x)
{
	return x+1;
};

Teaching Assistant
Pencil

function expression

* Produces an instance of a function object.

* Function objects are first class.
 May be passed as an argument to a function
 May be returned from a function
e May assigned to a variable
 May be stored in an object or array

* Function objects inherit from
Function.prototype.

function statement

e function function addOne (x) {

* mandatory name return x+1;

}

* parameters
 Wrapped in parens

e Zero or more names

e Separated by , (comma)

* body
 Wrapped in curly braces

e Zero or more statements

Teaching Assistant
Typewritten Text
function addOne (x) {
	return x+1;
}

Teaching Assistant
Pencil

function statement

 The function statement is just a short-hand
for a var statement with a function value.

function foo() {}
expands to
var foo

function foo() {}:

expands to
var foo = undefined;
foo = function foo() {3};

The assignment of the function is also hoisted.

/[function statement /[function expression

function addOne(x) { var addOne =
return xX+1; function(x) {
} return x+1; }
function expression
V

function statement

If the first token in a statement is
function, then it is a function

statement.

Teaching Assistant
Typewritten Text
// function statement
function addOne(x) {
	return x+1;
}

Teaching Assistant
Typewritten Text
// function expression
var addOne = function(x) {
	return x+1; }

var statement

* Declares and initializes variables within a
function.

* Types are not specified.

* A variable declared anywhere within a
function 1s visible everywhere within the
function.

var statement

e [t gets split into two parts:

 The declaration part gets hoisted to the top of
the function, initializing with undefined.

e The initialization part turns into an ordinary
assignment.

var myVar = 0, myOtherVar;
* Expands into
var myVar = undefined,
myOtherVar = undefined;

myVar = 0O;

Scope

Block scope v function scope

Scope

e In JavaScript, {blocks} do not have scope.

e Only functions have scope.

e Variables defined in a function are not visible outside of
the function.

function assure_ positive(matrix, n) {
for (var 1 = 0; 1 <n; 1 +=1) {
var row = matrix|[i];
for (var 1 = 0; 1 < row.length;
1 += 1) {
it (row[1] <0) {
throw new Error("Negative®);

Y ¥ r o}

Declare all variables at the top of
the function.

Declare all functions before you
call them.

The language provides
mechanisms that allow you to
ignore this advice, but they are
problematic.

Return statement

return expression;

or
return;

o If there is no expression, then the return
value is undefined.

e Except for constructors, whose default
return value is this.

this

 The this parameter contains a reference
to the object of invocation.

e this allows a method to know what object
it 1s concerned with.

e this allows a single function object to
service many functions.

e this is key to prototypal inheritance.

Invocation

 The () suffix operator surrounding zero
or more comma separated arguments.

* The arguments will be bound to
parameters.

Invocation

 If a function is called with too many
arguments, the extra arguments are
ignored.

e If a function is called with too few
arguments, the missing values will be
undefined.

* There is no implicit type checking on the
arguments.

Invocation

* There are four ways to call a function:
e Function form
 functionObject(arguments)
 Method form
 thisObject. methodName(arguments)
e thisObject]'' methodName'"| (arguments)
e Constructor form
e new FunctionObject(arguments)
e Apply form
 functionObject. apply (thisObject, | arguments])

Method form

thisObject. methodName(arguments)
thisObject]| methodName] (arguments)

e When a function is called in the method
form, this is set to thisObject, the object

containing the function.

 This allows methods to have a reference to
the object of interest.

Function form

functionObject(arguments)

e When a function is called in the function
form, this is set to the global object.

e That is not very useful. (Fixed in ES5/Strict)

* An inner function does not get access to the
outer this.

var that = this;

Constructor form

new FunctionValue(arguments)

e When a function is called with the new

operator, a new object is created and
assigned to this.

e If there is not an explicit return value, then
this will be returned.

e Used in the Pseudoclassical style.

this

depends on the calling .
form o the global object
° nction
. undefined
= this sives n}ethqu method the object
access to their objects.

invocation time.
apply

e this is an bonus
parameter. Its value

Closure

Lexical Scoping

Static Scoping

Closure

* The context of an inner function includes
the scope of the outer function.

* An inner function enjoys that context even
after the parent functions have returned.

Global

var names = ["zero", "one
"three®, "four-”,
"seven", "eight”,

var digit name = function
return names|n];

¥

alert(digit name(3d));

, two",
"five",
"nine"];

(n) 1

// "three”

Slow

var digit _name = function (n) {
var names = ["zero", "one", "two",
"three", "four®, "five", "siIx”
"seven®, “eight", "nine"];

return names|n];

¥

alert(digit_name(3d)); // "three-

Closure

var digit name = (function () {
var names = ["zero", "one", "two",
"three*, "four", "five", *
"seven", "eight®", "nine"];

SIX",

return function (n) {
return names|n];

¥
+0O):

alert(digit_name(3d)); // "three-

Teaching Assistant
Oval

function fade(id) {
var dom = document.getElementByld(id),
level = 1;
function step() {
var h = level.toString(16);
dom.style.backgroundColor =
"#FFFF® + h + h;
1T (level < 15) {
level += 1;
setTimeout(step, 100);

}

by
setTimeout(step, 100);

A Module Pattern

(function () {
var privateVariable;
function privateFunction(x) {

...privateVariable. ..

+

GLOBAL.firstMethod = function (a, b) {
...privateVariable. ..

}s

GLOBAL .secondMethod = function (c) {
. .privateFunction()...

}s

+O):

Your Library or Application Name Here

Teaching Assistant
Callout
Your Library or Application Name Here

Object literals

* An expressive notation for creating objects.
var ny_object = {foo: bar};

var ny _object = (pject.defineProperties(
(bj ect.create(Cbj ect. prototype), {
foo: {
val ue: bar,
writeable: true,
enuner abl e: true,
configurable: true

1)

JavaScript Object Notation (JSON)

value

string

number

object

array

true

false

nul i

array

Teaching Assistant
Typewritten Text
JavaScript Object Notation (JSON)

Teaching Assistant
Typewritten Text

Functional Inheritance

function gizmo(id) {
return {
1id: id,
toString: function (O {
return ''gizmo " + this.id;
}

1 hoozit extends gizmo

here.
function hoozit(id) {

var that = gizmo(id);

that.test = function (testid) {
return testid === this.i1d;

};

return that;

Teaching Assistant
Typewritten Text
hoozit extends gizmo
here.

Privacy

function gizmo(id) {
return {
toString: function O {
return ''gizmo " + 1d;
by
};

function hoozit(id) {
var that = gizmo(id);
that.test = function (testid) {
return testid === 1d;
};

return that;

Don’t make functions in a loop.

e [t can be wasteful because a new function
object is created on every iteration.

* It can be confusing because the new
function closes over the loop’s variables,
not over their current values.

Creating event handlers in a loop

for (var 1 ...) { <- BAD
div_id = divs[i1].1d;
divs[i].onclick = function () {
alert(div_id);
}s

}

var 1;
function make handler(div_id) {

return function (O {

alert(div_id);

} <- Better
L
for (n ...) {

div_id = divs[i].1d;

divs[i].onclick = make handler(div_id);

}

Teaching Assistant
Typewritten Text
<- BAD

Teaching Assistant
Typewritten Text
<- Better

Module pattern is easily
transformed into a powerful
constructor pattern.

And now (it we have time), a separate note
about how to create objects with
‘constructors’

Teaching Assistant
Typewritten Text
And now (if we have time), a separate note about how to create objects with 'constructors'

A Module Pattern

(function () {
var privateVari abl e;
function privateFunction(x) {
...privateVari able. ..
}

GLOBAL. first Method = function (a, b) {
...privateVari able. ..
}s
GLOBAL. secondMet hod = function (c) {
.. privateFunction()...
}s
1))

Your Library or Application Name Here

Teaching Assistant
Callout
Your Library or Application Name Here

Power Constructors

1. Make an object.

* Object literal, new, Object.create, call
another power constructor

2. Define some variables and functions.
* These become private members.

3. Augment the object with privileged
methods.

4. Return the object.

something that

S tep FO 10} ¢ returns an object

you want to base

your object on.
Remember JSON!

function myPowerConstructor(x) {
var that = otherMaker(Xx);
var secret = T(X);
that.priv = function () {
... Secret x that ...
}>

return that;

Teaching Assistant
Callout
something that returns an object you want to base your object on. Remember JSON!

	Slide Number 1
	Function
	function expression
	function expression
	var statement
	var statement
	function statement
	function statement
	function expression�v�function statement
	Scope
	Scope
	Declare all variables at the top of the function.��Declare all functions before you call them.��The language provides mechanisms that allow you to ignore this advice, but they are problematic.
	Return statement
	Two pseudo parameters
	arguments
	Example
	this
	Invocation
	Invocation
	Invocation
	Method form
	Function form
	Constructor form
	Apply form
	this
	Side Effects
	Subroutine
	Why are there subroutines?
	Recursion
	Quicksort
	Slide Number 31
	Recursive Descent
	Stack
	Closure
	Closure
	Global
	Slow
	Closure
	Lazy (Don’t Do This)
	Closure Conditional
	Slide Number 41
	later method
	later method
	Partial Application
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Sealer/Unsealer
	statusHolder
	Pseudoclassical Inheritance
	Pseudoclassical Inheritance
	Prototypal Inheritance
	Slide Number 53
	A Module Pattern
	A Module Pattern
	A Module Pattern
	Module pattern is easily transformed into a powerful constructor pattern.
	Power Constructors
	Power Constructors
	Power Constructors
	Power Constructors
	Step One
	Step Two
	Step Three
	Step Four
	Pseudoclassical Inheritance
	Functional Inheritance
	Privacy
	Shared Secrets
	Super Methods
	Slide Number 71
	Don’t make functions in a loop.
	Creating event handlers in a loop
	Tennent’s Principle of Correspondence
	The Y Combinator
	JavaScript has good parts.
	The Little Lisper
	The Little Schemer
	Next time:

