
Computer Science 75
Spring 2009
Scribe Notes

Lecture 9: April 13, 2009
Andrew Sellergren

Contents

1 The DOM and Ajax (0:00–48:00) 2

2 More Fun with AJAX (48:00–107:00) 9

1

Computer Science 75
Spring 2009
Scribe Notes

Lecture 9: April 13, 2009
Andrew Sellergren

1 The DOM and Ajax (0:00–48:00)

• We first took a look at the DOM in the context of XML and Project 1.
We used the query language XPath to look up information in the DOM.

• Here we have a small snippet of well-formed XHTML followed by a dia-
gram of it using the DOM:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>My title</title>
</head>
<body>

My link
<h1>My header</h1>

</body>
</html>

JavaScript and AJAX are all about the ability to dynamically generate
boxes like this on the fly. Excited yet?

• The power of Ajax, as we’ve already mentioned, is the ability to make
HTTP requests in the background, unbeknownst to the user and without
the necessity of a page refresh. The tool which makes this possible is the
XMLHttpRequest object, which you can read about here:

– Microsoft Developer Network

– Mozilla Developer Center

– World Wide Web Consortium

2

http://msdn2.microsoft.com/en-us/library/ms535874(VS.85).aspx
http://developer.mozilla.org/en/docs/XMLHttpRequest
http://www.w3.org/TR/XMLHttpRequest/

Computer Science 75
Spring 2009
Scribe Notes

Lecture 9: April 13, 2009
Andrew Sellergren

The annoying thing is that when Ajax was first rolled out, there was no
agreement among the major browsers in terms of this object. So when we
begin with our examples, we’ll be taking a look at a few hacks that achieve
cross-browser compatibility. Know that this is one of the advantages of
JavaScript libraries like jQuery, which abstract away the need for hacks
like this.

• The XMLHttpRequest object is a black box that takes care of both sending
and receiving the data behind the scenes. It has the following methods,
most of which are fairly self-explanatory:

– abort()

– getAllResponseHeaders()

– getResponseHeader(header)

– open(method, url)

– open(method, url, async)

– open(method, url, async, user)

– open(method, url, async, user, password)

– send()

– send(data)

– setRequestHeader(header, value)

• Because of the Same Origin Policy, Ajax requests can only be made for
files on the same server. This is to prevent malicious JavaScript from
being loaded without the user being aware. We’ll come back to this in
a few weeks when we talk about security, but for now, realize that it’s
the reason that you must write cities.php, which acts as a proxy for
gathering the RSS information from Google News.

• In addition to its methods, the XMLHttpRequest object has the following
properties:

– onreadystatechange

– readyState

∗ 0 (unitialized)

∗ 1 (open)

∗ 2 (sent)

∗ 3 (receiving)

∗ 4 (loaded)

– responseBody

– responseText

– responseXML

3

Computer Science 75
Spring 2009
Scribe Notes

Lecture 9: April 13, 2009
Andrew Sellergren

– status

∗ 200 (OK)

∗ 404 (Not Found)

∗ 500 (Internal Server Error)

– statusText

As you might’ve guessed, onreadystatechange is effectively an event han-
dler which allows you to react to any change in the state of your request.
Status code 4 is really the only important one–it means that a response
has come back and been loaded. The properties with prefix response
are exactly what you would expect. This is how you access the data that
you asked for. The status property, of course, corresponds to the HTTP
status code that is returned.

• Since the file you’re requesting via Ajax is ultimately on your own server,
you have a choice to make: what’s the format of the data that it will
return? The following are a few examples, all of which are specified by
the Content-type header:

– XHTML (text/html)

– XML (text/xml)

– JSON (application/json)

XHTML is a quick and dirty way of plopping some content out on your
website. If you want a little more structure, try XML or JSON, which
have a bit of metadata bundled along with them. JSON allows you to
serialize data from an array or an object and then pass it over the wire
where it can be unserialized and read back into memory.

• Take a look at ajax1.html. Notice that aesthetically, it’s a very simple
form, but it does manage to accomplish something we haven’t yet accom-
plished: delivering content without a page refresh. If you input a stock
symbol and click Get Quote, an alert pops up to display the stock price. If
we look at this using Live HTTP Headers, we see that an HTTP request
for the file quote1.php was made with the stock symbol passed as a GET
parameter. Take a look at how we achieve this in the body of ajax1.html:

<body>
<form onsubmit="quote(); return false;">

Symbol: <input id="symbol" type="text" />

<input type="submit" value="Get Quote" />

</form>
</body>

4

Computer Science 75
Spring 2009
Scribe Notes

Lecture 9: April 13, 2009
Andrew Sellergren

Here, we’re deliberately telling the form not to submit itself and reload
(return false;) but rather to make a call to our own function quote().
What’s the substance of quote()? We need only to look to the <head>
tag to find out:

<head>
<script type="text/javascript">
// <![CDATA[

// an XMLHttpRequest
var xhr = null;

/*
* void
* quote()
*
* Gets a quote.
*/
function quote()
{

// instantiate XMLHttpRequest object
try
{

xhr = new XMLHttpRequest();
}
catch (e)
{

xhr = new ActiveXObject("Microsoft.XMLHTTP");
}

// handle old browsers
if (xhr == null)
{

alert("Ajax not supported by your browser!");
return;

}

// construct URL
var url = "quote1.php?symbol=" +

document.getElementById("symbol").value;

// get quote
xhr.onreadystatechange = handler;
xhr.open("GET", url, true);
xhr.send(null);

}

5

Computer Science 75
Spring 2009
Scribe Notes

Lecture 9: April 13, 2009
Andrew Sellergren

/*
* void
* handler()
*
* Handles the Ajax response.
*/
function handler()
{

// only handle loaded requests
if (xhr.readyState == 4)
{

if (xhr.status == 200)
alert(xhr.responseText);

else
alert("Error with Ajax call!");

}
}

//]]>
</script>
<title></title>

</head>

Notice we declare a global variable xhr before trying to define it as a
new instance of an XMLHttpRequest object. This variable is global by
virtue of being declared outside the context of any function. If you want
to declare a global variable within a function, then leave off the var at the
beginning of the declaration. We’re also using the try and catch syntax,
which is a way of achieving error-handling. The try and catch syntax
allows you to sandwich together several lines of code and to deal with any
number of different exceptions or errors that result.

• Note that JavaScript doesn’t really have classes or constructors, per se,
but we can mimic that behavior quite well.

• What’s the deal with two different assignments to xhr? Microsoft, liking
to be different, has its own version of the XMLHttpRequest object called
ActiveXObject. We’re kind of abusing the try and catch syntax here,
but effectively we’re saying “If instantiating an XMLHttpRequest object
fails, assume the user has a Microsoft browser and try to instantiate an
ActiveXObject instead.” There are other ways to do this, but this one is
tried and true.

• Finally, if both those instantiation attempts fail, we’re assuming that the

6

Computer Science 75
Spring 2009
Scribe Notes

Lecture 9: April 13, 2009
Andrew Sellergren

user’s browser doesn’t support Ajax and we’re providing him with a mes-
sage accordingly.

• JavaScript, like PHP, doesn’t have strict data typing, so we can simply de-
clare a var to hold our URL. To construct our URL, we use the + sign to
concatenate whatever the user inputted into the symbol form (which we re-
trieve by calling getElementById()) onto the string quote1.php?symbol=.
There are different ways to get at the DOM nodes that we want, but one
good method is to give them unique IDs and then find them using the
getElementById() method.

• One advantage of JavaScript is asynchronicity. With JavaScript, we can
call a function and have it return immediately, calling another function as
soon as it returns. This is great for UI considerations in which we want
to appear like nothing has stalled. If you do, however, want to turn off
the asynchronicity of XMLHttpRequest, you have that ability by simply
specifying false as the third argument to the open() method. Take a
look at these lines:

xhr.onreadystatechange = handler;
xhr.open("GET", url, true);
xhr.send(null);

What we’re doing here is telling the operating environment to call the
handler() function whenever it’s ready to change its state. Then we’re
telling it to send the GET request in an asychronous fashion (using true
as the third argument to the open() method). What does handler() do?
Notice it makes a call to the alert() method (which accomplishes the pop-
up) only if the readyState property is equal to 4 (which means that the
page is loaded) and the overall status is 200 (meaning OK). The argument
to alert() is the responseText property of the XMLHttpRequest object,
which, in this case, is the stock price. w00t.

• Question: will the browser handle redirects for you (i.e. status of 301 or
302)? David thinks yes, but isn’t quite sure.

• Question: why do we assign handler without parentheses? We’re actually
passing a pointer to the function, telling it to be called only for our specific
event. If we had the parentheses on there, the function would be called as
soon as that line of code executed. Not what we want.

• Question: what if you have multiple functions with the same name but
different signatures? Which one gets called after an assignment like this?
Not sure, actually!

• What about quote1.php? Take a look at its code:

7

Computer Science 75
Spring 2009
Scribe Notes

Lecture 9: April 13, 2009
Andrew Sellergren

<?php

/**
* quote1.php
*
* Outputs price of given symbol as text/html.
*
* Computer Science 50
* David J. Malan
*/

// get quote
$handle = @fopen("http://download.finance.yahoo.com/d/"

. "quotes.csv?s={$_GET[’symbol’]}&f=e1l1", "r");
if ($handle !== FALSE)
{

$data = fgetcsv($handle);
if ($data !== FALSE && $data[0] == "N/A")

print($data[1]);
fclose($handle);

}
?>

Here we’re calling fopen(), which, as you’re probably familiar with by
now, allows you to open URLs like files and start reading from them. If
this call returns true, then we make a call to fgetcsv(), which should
give us only the first row. Then we’re doing a sanity check and making
sure that the symbol is valid before we simply print out its price.

• If we access quote1.php?symbol=msft directly from our browser, we get
the stock price printed directly to our browser window. However, be-
cause we’re normally making an HTTP request for this page from within
ajax1.html, this value won’t be printed to our browser window but rather
incorporated into an JavaScript alert pop-up thanks to our AJAX call.

• Truthfully, this webpage isn’t even a webpage, since there’s no markup
associated with it. To be more explicit, then, we might’ve specified an
appropriate header before spitting out the stock price:

header("Content-type: text/plain");

• Let’s take a moment to answer the question from before about whether
Ajax will handle redirects or not. We’ll start by rewriting the code of
quote1.php to be the following:

header("Location:
http://www.cs75.net/lectures/9/src/quote1.5.php?symbol={$_GET["symbol"]}");

8

http://cs50.net/lectures/weeks/9/src/ajax/quote1.php?symbol=msft

Computer Science 75
Spring 2009
Scribe Notes

Lecture 9: April 13, 2009
Andrew Sellergren

Then, as you might’ve guessed, we copy quote1.php to quote1.5.php.
Tada! It works. Note that we had to manually add the GET arguments
back onto the end of the URL. Turns out it works in Firefox, IE, as well
as Chrome. Don’t try to redirect to a different server and then embed the
content in your own webpage, because it most likely won’t work.

• Now, a shameless, pointless break in the action so that this one section
doesn’t overrun all the scribe notes!

2 More Fun with AJAX (48:00–107:00)

• No one likes pop-ups, so how can we achieve this content update in a
more elegant fashion? Take a look at ajax2.html where it differs from
ajax1.html:

document.getElementById("price").value = xhr.responseText;

Notice this change to the line in handler(). Instead of printing the
responseText property to a JavaScript pop-up, we’re going to write it
to a form input with id="price".

• What’s new with ajax3.html? Nothing much, except that now instead
of writing the stock price to a form, we’re going to write it to a span. To
do this, we change the line of code like so:

document.getElementById("price").innerHTML = xhr.responseText;

Note that writing to innerHTML isn’t technically standards-compliant, but
it’s a fairly widespread (and useful) technique.

• If we open up Firebug, we can watch the previous content of this span be
entirely clobbered in realtime.

• A quick sidenote about Project 3: as noted on the Bulletin Board, the
so-called “proper” way of handling duplicate zipcodes is to only import
the one with “P” for the primary record column. However, as Chris Power
suggested, you could also define a joint primary key using city name and
zipcode such that only a single record will be inserted for each unique pair
of those. Frankly, either way is fine, and it’s also acceptable for you to do
some interpreting of the data on your own and decide what’s best.

• Let’s take a look, now, at quote2.php, which will return a little more data
than before:1.

1Sorry for the broken URL, but I needed it to wrap across two lines to fully display

9

Computer Science 75
Spring 2009
Scribe Notes

Lecture 9: April 13, 2009
Andrew Sellergren

<?
/**
* quote2.php
*
* Outputs price, low, and high of given symbol as plain/text.
*
* David J. Malan
* Computer Science E-75
* Harvard Extension School
*/

// send MIME type
header("Content-type: text/plain");

// try to get quote
$handle = @fopen("http://download.finance.yahoo.com/d/"
. "quotes.csv?s={$_GET[’symbol’]}&f=e1l1hg", "r");
if ($handle !== FALSE)
{

$data = fgetcsv($handle);
if ($data !== FALSE && $data[0] == "N/A")
{

print("Price: {$data[1]}\n");
print("High: {$data[2]}\n");
print("Low: {$data[3]}");

}
fclose($handle);

}
?>

Here, we’re doing the same as before, except we’re printing multiple lines
of stock data instead of just one. If you take a look at ajax5.html, you’ll
see that it prints this extra data, as before, in the innerHTML of a span.

• Note that it’s a little lazy and sloppy of us to only be checking for a
readyState of 4. We could certainly check for other status changes along
the way.

• A quick note: why is it okay that we don’t have any of the usual tags,
e.g. head, body, or even html, in our PHP quote files? Well, we’re simply
inserting it into another document which presumably is valid XHTML.

• In ajax6.html, we have a poor man’s progress bar:

document.getElementById("quote").innerHTML = "Looking up symbol...";

Before we make our Ajax call, we’re just manually changing the content so
that there’s the appearance of progress. If we wanted to create animation,

10

Computer Science 75
Spring 2009
Scribe Notes

Lecture 9: April 13, 2009
Andrew Sellergren

we could put a GIF in there using an img tag—perhaps one that’s already
embedded whose display property we could dynamically change.

• In ajax7.html, we actually implement this animation using only a few
extra lines of code, a few of them being the below:

// show progress
document.getElementById("progress").style.display = "block";

Here, we’re dynamically accessing the style property of a div that’s al-
ready in our DOM by virtue of the following XHTML:

<div id="progress" style="display: none;">

</div>

As you can see, it’s just a GIF whose display CSS property is set to none.
If we want to toggle it to be visible, we just change this to the standard
block. Then, in our handler, once our request has returned successfully,
we reset the GIF’s display to none.

• The next step we’re going to take is a little bigger. We’ll start by exam-
ining the relevant changes that have been made in quote5.php:

// set MIME type
header("Content-type: text/xml");

// output root element’s start tag
print("<quote symbol=’{$_GET[’symbol’]}’>");

// try to get quote
$handle = @fopen("http://download.finance.yahoo.com/d/"
. "quotes.csv?s={$_GET[’symbol’]}&f=e1l1hg", "r");
if ($handle !== FALSE)
{

$data = fgetcsv($handle);
if ($data !== FALSE && $data[0] == "N/A")
{

print("<price>{$data[1]}</price>");
print("<high>{$data[2]}</high>");
print("<low>{$data[3]}</low>");

}
fclose($handle);

}

// output root element’s end tag
print("</quote>");

11

Computer Science 75
Spring 2009
Scribe Notes

Lecture 9: April 13, 2009
Andrew Sellergren

Notice that now we’re declaring a MIME type of XML and we’re spit-
ting out a few nodes of XML data, though not a complete, well-formed
document. That’s fine, as long as we know what we’re looking for in
ajax8.html:

// get XML
var xml = xhr.responseXML;

// update price
var prices = xml.getElementsByTagName("price");
if (prices.length == 1)
{

var price = prices[0].firstChild.nodeValue;
document.getElementById("price").innerHTML = price;

}

// update low
var lows = xml.getElementsByTagName("low");
if (lows.length == 1)
{

var low = lows[0].firstChild.nodeValue;
document.getElementById("low").innerHTML = low;

}

// update high
var highs = xml.getElementsByTagName("high");
if (highs.length == 1)
{

var high = highs[0].firstChild.nodeValue;
document.getElementById("high").innerHTML = high;

}

Here, as you can see, we’re accessing responseXML as a DOM document
itself, which has been automatically loaded up into memory by our XML-
HttpRequest object. Then we’re going to search it for the tags we know
are there and, since the getElementsByTagName() method returns an ar-
ray, we’re going to ask for the first such tag and access the firstChild
thereof.

• You can verify for yourself that if you change the MIME type to plain text,
you can’t parse it like an XML file and our ajax8.html won’t function
properly.

• In ajax9.html, we’re going to revert back to accessing quote1.php and
proceed to build our own DOM nodes using the following code:

// insert quote into DOM

12

Computer Science 75
Spring 2009
Scribe Notes

Lecture 9: April 13, 2009
Andrew Sellergren

var div = document.createElement("div");
var text = document.createTextNode(symbol + ": " + xhr.responseText);
div.appendChild(text);
document.getElementById("quotes").appendChild(div);

We’re just creating a new DOM element of type div and then appending,
as a child, the responseText as a new text node. Finally, we append the
div as a child of a div in our whole DOM.

• So we were discussing earlier the fact that using the innerHTML property
is not technically standards-compliant. Technically, what we should be
doing is simply grabbing the data from the server and then rendering it
client-side using code like the above. The problem with that approach is
that it might end up being much slower. The speed with which the user’s
browser interprets JavaScript is variable, whereas the speed with which
our server can format the data is something more or less constant—or at
least known to us. These days, the arguments over browser speed don’t
pertain only to the speed with which they load pages, but also the speed
with which they interpret JavaScript.

• As an interesting sidebar, the YUI library has a widget called a DataTable
which automatically implements pagination and sorting of a table. How-
ever, the YUI developers have found that creating DOM nodes on the fly
tends to be pretty slow, so they actually generated code that would allow
nodes to be reused in the interest of performance optimization.

• As we mentioned before, we have another format for passing data across
the wire known as JSON, or JavaScript Object Notation. Basically, we’re
taking a JavaScript object, serializing it—or converting it to a string—
and then sending it to be unserialized by the file that requested it. Our
serialized object looks something like this, as displayed in ajax10.html:

{ price: 379.30, high: 390.65, low: 375.89 }

Not too difficult, it’s just a series of key-value pairs separated by colons.
How do we parse this? Here’s one way:

// evaluate JSON
var quote = eval("(" + xhr.responseText + ")");

With this call to eval(), we’re evaluating the responseText as JavaScript,
so it’s being loaded up into memory as an object again. Note that we have
to put parentheses around it. In other contexts, eval() can be a security
concern, but since we’re passing it our own code, presumably this is a safe
context. Now, when we want to access the price that’s returned, we do so
with our dot notation:

var text = document.createTextNode(symbol + ": " + quote.price);

13

Computer Science 75
Spring 2009
Scribe Notes

Lecture 9: April 13, 2009
Andrew Sellergren

• All of this is pretty simple. But how do we go about outputting the JSON?
First, we’ll need to change the MIME type:

// set MIME type
header("Content-type: application/json");

Of course, we could simply print out the JSON we need manually, as we
do in quote6.php:

// output JSON
print("{ price: $price, high: $high, low: $low }");

But a sleeker way of doing this would be to leverage PHP’s built-in func-
tion called json_encode(). First, we’ll need to define a class for our
stock:

// defines a stock
class Stock
{
public $price;
public $high;
public $low;
}

If you’re not familiar with object-oriented programming, don’t be alarmed.
It’s not too difficult, especially in this context, where our class is effectively
an array. If we call print_r() on it, we get the following:

Stock Object
(

[price] => 378.11
[high] => 379.10
[low] => 370.30

)

Not too scary, right? Looks just like an array. Once we’ve created our
object, we only need to pass it to json_encode() to have it properly
formatted.

• As we’ve said before, the great thing about JavaScript is the multitude
of libraries that are available. Using the YUI library, we can whittle our
Ajax request down to the following:

// make call
YAHOO.util.Connect.asyncRequest("GET", url, { success: handler });

Magic! And next time, more magic!

14

	The DOM and Ajax (0:00--48:00)
	More Fun with AJAX (48:00--107:00)

