
Computer Science 75
Spring 2009
Scribe Notes

Lecture 8: April 6, 2009
Andrew Sellergren

Contents

1 Projects (0:00–20:00) 2

2 JavaScript, Continued (20:00–54:00) 2

3 Some Examples with JavaScript (54:00–84:00) 5

1

Computer Science 75
Spring 2009
Scribe Notes

Lecture 8: April 6, 2009
Andrew Sellergren

1 Projects (0:00–20:00)

• Congrats to Carl and Rob for topping The Big Board by exploiting the
non-real-time stock quotes!

• For your benefit, we have a sample solution for Project 3, as well. This
is not meant to be the end-all, be-all, but rather a helpful guide. Feel
free to change things around in your own implementation so long as you
ultimately meet all the requirements in the project’s specification.

• In order to minimize hits on the Google News server we’ll actually be
caching news items on our own servers for up to 24 hours. If the timestamp
of some of your news items seems a little off, this caching is most likely
the cause.

• If you take a look at the source code of the sample solution for Project 3,
you’ll notice that the JavaScript has been minified. What we did is to run
it through one of YUI’s widgets which removes whitespace and comments
as well as shortens function and variable names, both to obfuscate the
code and to minimize the number of bytes that are transferred over the
wire when a request is made for that JavaScript file.

• When we type in a zipcode, what are the steps that are carried out in
looking up news items? If we take a look using Live HTTP Headers,
we can see that what is actually being passed via GET is a set of GPS
coordinates for that city. We get those coordinates from our zipcode
database, which provides the latitude and longitude of the city’s effective
center. We paid a little more this year for the deluxe version of the zipcode
database which also includes population for each city. This way, we can
prioritize the news items returned by our query such that only news for
the 5 biggest cities is returned.

• The motivation for Project 3 is the Wii News Channel, a demonstration
of which you can check out here.

2 JavaScript, Continued (20:00–54:00)

• One of the features of the sample Google News mashup (and requirements
for Project 3) is dynamic map resizing. How can we accomplish this using
JavaScript?

• To set the size of the map when the page loads, we’ll want to register a
listener for the onload property. We can do this like so:

window.onload = init;

function init()
{

2

http://www.cs75.net/news/
http://www.youtube.com/watch?v=uO6J8ryTKYk

Computer Science 75
Spring 2009
Scribe Notes

Lecture 8: April 6, 2009
Andrew Sellergren

//code
}

Of course, since we’re only going to be calling this function once, when
the page loads, why bother giving it a name at all? We can register it as
an anonymous function instead:

window.onload = function() { //code };

• We need to be a bit more clever than this, however, since we want to resize
the map anytime that the browser window is resized. Obviously, then, we
need to execute code more often than when the page first loads.

• In our HTML, we would do well to identify our map using a div like so:

<div id="map"></div>

Of course, our id doesn’t have to be “map,” but can be anything we want
it to be. Later, when we want to access this div, we can execute the
following JavaScript code:

<script>
var map = document.getElementById("map");
</script>

Now, if we want to change the map’s style attributes, we can do the
following:

map.style.height = "100px";
map.style.width = "80%";

Of course, this isn’t going to accomplish exactly what we want with regard
to the dynamic resizing, but it gives you the tools you need to figure it
out on your own!

• Question: what happens if we want to register more than one handler for
an event? What you could do is check if the event already has a handler,
copy the pointer reference to that handler, create the new function that
you want to add as a handler, and finally chain them together. Needless
to say, this is pretty complicated and we won’t be doing it on the fly.
However, it’s a nice segue into discussing the YUI Event Utility.

• The YUI Event Utility allows you to register listeners just as you can do
manually in JavaScript. The advantage of the YUI library, however, is that
it enables you to chain any number of functions together without having
to worry about pointer references. Simply make a call to the addListener
method and pass it the arguments it requires. It will take care of chaining
the functions together, if need be.

3

Computer Science 75
Spring 2009
Scribe Notes

Lecture 8: April 6, 2009
Andrew Sellergren

• Generally speaking, what approach might we take to accomplish the dy-
namic map resizing? Obviously, we’ll need to grab the total size of the
window. From there, we can subtract a certain amount of space for the
search bar up top. This can be a value in pixels if we always want it to
be the same size. The remainder, then, is the space for the map.

• A sidenote: anytime that an SSL-encrypted page pulls data from a non-
SSL-encrypted page, a browser warning (at least in most major browsers)
will be issued asking the user if both secure and non-secure items should
be displayed. To fix this bug, make sure that all the content on a page is
being requested from a https:// address.

• Another quick gotcha: when you access style elements using JavaScript,
they’ll be returned to you as strings. Don’t simply add a number to them
and expect it to update properly!

• Additionally, if the height of an element hasn’t been explicitly set, then
accessing its height property in JavaScript won’t return anything. You’re
better off using a JavaScript library to get this information reliably. In
the YUI library, the getRegion() method accomplishes this.

• Recall from last time the other JavaScript libraries which are available to
you:

– Dojo

– Ext JS

– jQuery

– MooTools

– Prototype

– script.aculo.us

– YUI

• Scriptaculous, for one, has a site that displays a healthy set of demos of
its UI elements here. For jQuery, check out the Datepicker and Dialog
widgets. Dojo, also, has a very cool demo called Fisheye which you can
play around with here. Be careful, however, not to cram in more bells and
whistles than is really useful or necessary!

• For a great set of documentation on cross-browser compatibility issues,
check out QuirksMode. A JavaScript verifier like JSLint is invaluable to
you, the developer, before you minify your code to make sure that it will
work properly once compressed.

• As for compressors, avail yourself of one of the following:

– JSMin

– packer

4

http://dojotoolkit.org/
http://extjs.com/
http://jquery.com/
http://mootools.net/
http://www.prototypejs.org/
http://script.aculo.us/
http://developer.yahoo.com/yui/
http://wiki.github.com/madrobby/scriptaculous/combination-effects-demo
http://jqueryui.com/demos/datepicker/
http://jqueryui.com/demos/dialog/
http://www.dojotoolkit.org/demos/fisheye-demo
http://www.quirksmode.org/
http://www.jslint.com/
http://javascript.crockford.com/jsmin.html
http://dean.edwards.name/packer/

Computer Science 75
Spring 2009
Scribe Notes

Lecture 8: April 6, 2009
Andrew Sellergren

– ShrinkSafe

– YUI Compressor

3 Some Examples with JavaScript (54:00–84:00)

• What does it take to embed a Google Map in your website? Once you’ve
registered for an API Key, no more than these lines of code:

<script type="text/javascript">
//<![CDATA[

function load()
{

if (GBrowserIsCompatible())
{

var map = new GMap2(document.getElementById("map"));
map.setCenter(new GLatLng(37.4419, -122.1419), 13);

}
}

//]]>
</script>

As before, we’re bracketing the code in CDATA tags so that our XHTML
will still validate. Then we’re calling a function which checks if the user’s
browser is compatible with Google Maps. If it is, then we instantiate a
new GMap2 object and set its center. That’s all there is to it! Well, sort
of. We still have to actually call this function that we’ve defined:

<body onload="load()" onunload="GUnload()">

There we go.

• Our next example, map2.html, will fill the entire browser window with
the map using CSS style properties:

<body onload="load()" onunload="GUnload()"
style="height: 100%; margin: 0px;">

<div id="map" style="height: 100%; width: 100%;"></div>

We do this simply by setting the height and width to 100%. Notice,
however, that we must set the height of the body element to 100% as
well.

• So we’ve filled the viewport with the map, but what happens when we try
to add a simple form element?

5

http://dojotoolkit.org/docs/shrinksafe
http://developer.yahoo.com/yui/compressor/

Computer Science 75
Spring 2009
Scribe Notes

Lecture 8: April 6, 2009
Andrew Sellergren

<form><input type="text" /><input type="submit" /></form>

What happens is that we get an annoying scroll bar that we can never
quite get rid of. This is, of course, because the total height of the page
will always be greater than 100% of the browser window, by virtue of the
additional height of the form.

• Our next attempt, map3.html, will recreate some of the familiar controls
of Google Maps, besides the built-in drag:

<script type="text/javascript">
//<![CDATA[

function load()
{

if (GBrowserIsCompatible())
{

// instantiate map
var map = new GMap2(document.getElementById("map"));

// center map on Science Center
map.setCenter(new GLatLng(42.376649, -71.115789), 13);

// add control using a local variable
var typeControl = new GMapTypeControl();
map.addControl(typeControl);

// add another control without using a local variable
map.addControl(new GLargeMapControl());

// enable scroll wheel and smooth zooming
map.enableScrollWheelZoom();
map.enableContinuousZoom();

}
}

//]]>
</script>

As you can see, we add these controls by calling methods from the Google
API. We can do this by using a temporary local variable, as in the first
case, or simply by instantiating a new object within the method call itself.
The second way is a little cleaner.

• Getting a little fancier, map4.html will finally add one of the red Google
markers that you’re probably familiar with:

6

Computer Science 75
Spring 2009
Scribe Notes

Lecture 8: April 6, 2009
Andrew Sellergren

<script type="text/javascript">
//<![CDATA[

function load()
{

if (GBrowserIsCompatible())
{

// instantiate map
var map = new GMap2(document.getElementById("map"));

// prepare point
var point = new GLatLng(42.376649, -71.115789);

// center map on Science Center
map.setCenter(point, 13);

// mark Science Center
var marker = new GMarker(point);
map.addOverlay(marker);

// associate info window with marker
GEvent.addListener(marker, "click", function() {

// prepare XHTML
var xhtml = "Science Center";
xhtml += "

";
xhtml +=
"<a href=’http://en.wikipedia.org/wiki/Harvard_Science_Center’
target=’_blank’>";
xhtml += "http://en.wikipedia.org/wiki/Harvard_Science_Center";
xhtml += "";

// open info window
map.openInfoWindowHtml(point, xhtml);

});

}
}

//]]>
</script>

As you can see, in the Google Maps API vocabulary, these red markers
which, when clicked, pop up a small information bubble, are called over-
lays. Literally, they’re being laid on top of the rest of the content of our

7

Computer Science 75
Spring 2009
Scribe Notes

Lecture 8: April 6, 2009
Andrew Sellergren

webpage, probably using something called the CSS Z-index. Once we’ve
added an overlap at the Science Center’s GPS coordinates, we register an
event handler to the click event of this overlay, which pops up an infor-
mation window populated with the XHTML content we’ve specified. In
this case, it’s a link to the Wikipedia page for the Science Center.

• Note that Google only allows the user to have a single info window open
at a time.

• Now let’s pull a few of these concepts together and even reach back to
Project 2 with this next example, map5.html:

<script type="text/javascript">
//<![CDATA[

function load()
{

if (GBrowserIsCompatible())
{

// instantiate map
var map = new GMap2(document.getElementById("map"));

// prepare point
var point = new GLatLng(37.4419, -122.1419);

// center map on Science Center
map.setCenter(point, 13);

// mark Science Center
var marker = new GMarker(point);
map.addOverlay(marker);

// associate info window with marker
GEvent.addListener(marker, "click", function() {

// prepare Ajax call
var request = GXmlHttp.create();
request.open("GET", "quote3.php?symbols=GOOG", true);
request.onreadystatechange = function() {

// only handle successful calls
if (request.readyState == 4 && request.status == 200)
{

// prepare XHTML
var xhtml = "Google";
xhtml += "

";

8

Computer Science 75
Spring 2009
Scribe Notes

Lecture 8: April 6, 2009
Andrew Sellergren

// get Google’s quote
var quote =
request.responseXML.getElementsByTagName("quote")[0];

// get Google’s price
var price =
quote.getElementsByTagName("price")[0].firstChild.nodeValue;

// report price
xhtml += "$" + price;

// open info window
map.openInfoWindowHtml(point, xhtml);

}
};

// get quote
request.send(null);

});

}
}

//]]>
</script>

Our first foray into Ajax! Now, when we click our red Google marker,
we’re not just inserting static XHTML. We’re actually executing some
code. It looks like we’re opening a GET request, checking that it returns an
HTTP Status code indicating “OK,” then we’re grabbing the information
we desire from the XML output, in this case, the stock quote for Google.
More on Ajax next week!

• More than any of the other projects so far, it will be important for Project
3 for you to learn how to use an external tool (in this case Google Maps)
using its API and documentation. We’ll walk you through a lot of it, but
as is the case in the real world, for a large part of it, you’ll be on your
own. Try to have fun with it!

9

	Projects (0:00--20:00)
	JavaScript, Continued (20:00--54:00)
	Some Examples with JavaScript (54:00--84:00)

