Computer Science 75 Lecture 7: March 30, 2009
Spring 2009 Andrew Sellergren
Scribe Notes

Contents

1 David’s Extracurricular Exploits (0:00-14:00) 2
2 Introduction to JavaScript(14:00—23:00) 2
3 JavaScript Syntax (23:00-53:00) 3
4 Form Validation and More (53:00-10:00) 6



Computer Science 75 Lecture 7: March 30, 2009
Spring 2009 Andrew Sellergren
Scribe Notes

1 David’s Extracurricular Exploits (0:00-14:00)

Recently, David undertook a project to improve Harvard’s online campus
map located at map.harvard.edu. If you check out the old site, you can
see that it’s fairly useful up to a point. The buildings are all demarcated
by polygon outlines and labeled with their names. It’s searchable, too.

Still, there’s obviously room for improvement. As you’ll learn for Project
3, Google Maps has a fantastic API. Given this, as well as an XML file
from Harvard containing the names of buildings on campus as well their
latitude and longitude coordinates and polygon outlines, David was able
to create a mashup which displayed Harvard’s campus using Google Maps.

One of the problems that David encountered has to do with the way Google
Maps is implemented. It’s actually just a series of PNG tiles which are
requested from the server as needed. This presents a problem, though,
when trying to add your own objects to the map. You need to cut and
scale them just as the map tiles are cut and scaled. Fortunately, others
out there have encountered this problem and written their own scripts to
handle it.

A few of the features still need some tweaking. The rendering of all campus
building outlines takes so long on some computers that it crashes the
browser. At low enough magnification, the display of the building labels
renders as a huge black splotch because they all overlap. Still, there are
some cool tricks like auto-complete which David implemented using Ajax.
And they’ll only get better (we hope)!

Another pet project of David’s is the Harvard event aggregator. What
this does is download data from a number of different event calendars and
compiles them into a nice readable format for people to peruse. Using a bit
of JavaScript and Ajax on the front end, users can toggle more information
about a particular event.

One of the biggest issues that David has encountered (and you will en-
counter whenever you're doing web development) is that of cross-browser
compliance. Basically, it ain’t gonna be easy. Ahem, excuse me. It’s
difficult is what I mean.

2 Introduction to JavaScript(14:00-23:00)

Unlike all the languages we’ve looked at so far, JavaScript is entirely client-
side. It’s an interpreted language, like PHP, meaning that it must be
passed to an interpreter at runtime. In the case of JavaScript, however,
that interpreter is packaged with the user’s browser.

The first major gotcha regarding JavaScript is that the user can disable
it. This is less common these days, but in the case of browsers on mobile



Computer Science 75 Lecture 7: March 30, 2009
Spring 2009 Andrew Sellergren
Scribe Notes

phones, for example, it might be a problem if your site absolutely depends
on JavaScript in order to function properly. The overarching goal is for
graceful degradation, which is to say that if the user’s browser is fully
supported, then he’ll have access to all of your site’s features. If his browser
is only partially supported, then your site should still function even if not
to its fullest.

e What’s the major advantage of using JavaScript? As we’ll see, it can be
used not only for stylistic details, but also for parsing and dynamically
displaying data. If you can do some or all of your data manipulation
client-side, then you need only transfer the raw data from server to client,
which amounts to fewer bytes than formatted data would entail. JSON
(JavaScript Object Notation), for example, is a more lightweight way of
transmitting data than XML because it doesn’t require a whole lot of
metadata to be coupled with it.

e One of the Ajax-driven sites that you’re probably familiar with is facebook.
As you may have noticed, you can click on links on facebook without
having to reload the chat bar. This is a neat trick that they and Gmail
have pulled off using Ajax, which dynamically requests content on-the-fly.
To you, the user, the data loading appears seamless.

e The JavaScript references out there aren’t as complete and reliable as the
PHP references you’re already familiar with, but a little Googling never
hurt anybody.

3 JavaScript Syntax (23:00-53:00)

e JavaScript is embedded directly in the webpage using the script tag like
so:

<script type="text/javascript">
// <![CDATA[

/7 11>

</script>

Note that you can also specify what version of JavaScript is required for
your webpage using the language attribute, but this is not generally done.

e Why are we enclosing our JavaScript within CDATA tags? This way, we
don’t have to worry about our JavaScript not being valid XHTML. Certain
characters like the left-angle bracket (<) meaning “less than,” might be
interpreted as the opening of an XHTML tag, for example.

e The script tag can be embedded at the beginning of the webpage in the
head element or else anywhere in the body element. In some cases, (e.g.
Google Analytics) it’s recommended that the JavaScript be inserted just



Computer Science 75 Lecture 7: March 30, 2009
Spring 2009 Andrew Sellergren
Scribe Notes

before the closing HTML tag. This is because asynchronicity introduces
the problem of race conditions. What if your script loads and begins
executing before the page has fully rendered? You may encounter runtime
errors if, for example, you begin searching for a node in the DOM before
that node has actually been loaded. Thankfully, there are JavaScript
libraries available which solve this problem by listening and waiting for
the DOM to be fully loaded before executing your script.

e Another way of embedding JavaScript is by removing it to a source file
like so:

<script src="file.js" type="text/javascript"></script>

While it’s tempting in this case to include the forward slash within the
open tag so that script is an empty element, this will introduce all sorts
of problems. Just bite the bullet and add that closing tag!

e The noscript tag are used to display, at the very least, some kind of
message to users who have JavaScript disabled.

e Question: does noscript apply only to JavaScript? Most likely, no. It
probably applies also to VB script which can be embedded in webpages.

e All variables in JavaScript are objects, primitives, or arrays. Even strings
are implemented as objects such that they have built-in methods asso-
ciated with them. Primitives are the data types which come native to
JavaScript. Among them are string, number, and boolean.

e To initialize an array in JavaScript, you can use either of the following
lines of code:

var x = new Array();
var x = [];

The first line is actually invoking the constructor for an array while the
second line is more common and recommended. Once you’ve initialized
an array, you can add values to it using the following syntax:

[

x[0] = ‘a’;
x[1] = ‘b’;
x[2] = ‘¢’

Hardcoding the indices of the array isn’t always a good idea, however.
What you can do instead is to invoke the built-in length method of the
array:

x[x.length] = ‘a’;
x[x.length] =

|
o'



Computer Science 75 Lecture 7: March 30, 2009
Spring 2009 Andrew Sellergren
Scribe Notes

In the first line, the length method will return O since the array x has
just been initialized. In the second line, however, the length method
will return 1 because it has been updated since the addition of ‘a’ as an
element.

e JavaScript comes packaged with multiple global objects, including the
following:
— Array
— Boolean
— Date
Function
Math
Number
— Object
— RegExp

— String

e What exactly is an object, though? It’s a collection of key-value pairs
which amounts to a hash table, much like associative arrays in PHP. To
initialize or instantiate an object, use the following syntax:

var obj = new Object();
var obj = {};

obj.key = value;
obj["key"] = value;

var obj = { key: value };

Note that the first two lines are equivalent to each other, the second two
lines are equivalent to each other, and the last line is a combination of the
first two groups. Using the dot notation is generally recommended.

e What are some of the tricks we can pull off using JavaScript? If we take a
look at the CS 75 login page, we can see that the cursor is automatically
placed in the username field when the page is loaded. We accomplish this
using a few lines of JavaScript:

<script type="text/javascript">
// <![CDATA[
// put cursor in username field if empty
if (document.forms.login.username.value == "")

{

document . forms.login.username.focus();



Computer Science 75 Lecture 7: March 30, 2009
Spring 2009 Andrew Sellergren
Scribe Notes

document.forms.login.username.value =
document.forms.login.username.value;

}

// else put cursor in password field

else

{
document . forms.login.password.focus();
document.forms.login.password.value =

document.forms.login.password.value;
}
/7 11>

As you can see, with the dot notation, we're following a hierarchy of page
elements. This hierarchy is the DOM itself, the root being the document
element. The forms element contains all of the HTML forms on the
page. From there, login refers to the name of the particular form and
the username refers to the field of that form that we’re interested in. The
focus() method is a built-in method which places the cursor on that
element.

e What’s the point of the second line of code in each of these blocks? Actu-
ally, in this case, nothing. What it was supposed to do was make sure that
the cursor would be placed at the end, rather than the beginning, of any
input that was already in the field. In this case, however, we’'ve checked
that the field is empty to begin with, so it doesn’t matter.

e One of other useful application of JavaScript is client-side form validation.
A question that has arisen on the Bulletin Board is why is server-side
validation necessary if client-side validation is implemented? Well, it’s
very easy for a user to disable JavaScript and thereby circumvent all client-
side validation.

e Why do it at all, then? Arguably, it improves the user’s experience be-
cause it saves them an HTTP request and provides immediate feedback.
Additionally, it saves your servers some work!

4 Form Validation and More (53:00-10:00)

e If up until now, you haven’t been using Firefox for development, you
should really consider doing so. The wealth of tools and plugins available
to help you peel back the layers of the DOM and look underneath the
hood of various libraries is more than enough reason to use it.

o If we take a look at our first code sample, form1.html, we see that it’s a
basic HTML form that submits to a page which prints out the $_REQUEST
superglobal. As a sidenote, if you see variables in this array that look like
__utma, they most likely belong to Google Analytics. If you clear your
cookies, they’ll go away.



Computer Science 75 Lecture 7: March 30, 2009
Spring 2009 Andrew Sellergren
Scribe Notes

e The next version, form2.html, implements the most basic form validation
by checking that the user has provided the same password twice. Let’s
take a look at the JavaScript which achieves this:

function validate()

{
if (document.forms.registration.email.value == "")
{
alert("You must provide an email adddress.");
return false;
X
else if (document.forms.registration.passwordl.value == "")
{
alert("You must provide a password.");
return false;
X
else if (document.forms.registration.passwordl.value !=
document .forms.registration.password2.value)
{
alert("You must provide the same password twice.");
return false;
X
else if (!document.forms.registration.agreement.checked)
{
alert("You must agree to our terms and conditions.");
return false;
X
return true;
by

If we break this down, it’s not too different from what we looked at before.
One thing that we should note, however, is that we’'ve abstracted this
JavaScript into a function. We call this function when the user has clicked
the Submit button by using the following line of code:

<form action="process.php" method="get" name="registration"
onsubmit="return validate() ;">

Here, we see that the form tag has an attribute called onsubmit, which,
as you might’'ve guessed, is given as its value a snippet of code that is
to be executed when the user submits the form. Note that because we’re
using onsubmit and not onclick, this code will be executed if the user
hits Enter or clicks the Submit button himself.

e One convention of JavaScript to be aware of is that semicolons are not
explicitly necessary after lines of code. Newlines characters will be in-
terpreted as the end of a line of code. Don’t be surprised, then, if you



Computer Science 75 Lecture 7: March 30, 2009
Spring 2009 Andrew Sellergren
Scribe Notes

see semicolons left out of code samples online. We encourage you to use
semicolons, however, as a matter of good practice.

e We return false from our validate () function because the onsubmit at-
tribute expects a boolean. If it returns true, then the form will be sub-
mitted normally. If it returns false, then the user we’ll be bounced back
to the page. Here, you can see that we’re returning false in all cases where
the user has supplied invalid input.

e In accessing the DOM elements, we can see that text fields have a property
called value which holds their input and checkboxes have a property called
checked which is a boolean.

e In form3.html, we’ve cleaned up our code a little bit using the with
syntax. To avoid having to access each DOM element beginning with
with the root element document, we can write the following:

with (document.forms.registration) {...}

What this says is that for every DOM path between the curly braces that
we haven’t explicitly defined beginning with document, assume that it
begins with this path. Saves us some extra typing, at least.

e In form4.html, we actually pass an argument to the validate () function:

<form action="process.php" method="get" name="registration"
onsubmit="return validate(this) ;">

This, of course, necessitated that we redefine the validate () function so
that it would take one argument:

function validate(f)
{
if (f.email.value == "")
{
alert("You must provide an email adddress.");
return false;

}

else if (f.passwordl.value == "")

{
alert("You must provide a password.");
return false;

}

else if (f.passwordl.value !'= f.password2.value)

{

alert("You must provide the same password twice.");
return false;



Computer Science 75 Lecture 7: March 30, 2009
Spring 2009 Andrew Sellergren
Scribe Notes

}

else if (!f.agreement.checked)

{
alert("You must agree to our terms and conditions.");
return false;

b

return true;

Now we can access the registration form as f, because we’ve passed it
to the function using the this keyword, which references the object that
called it. This function is now more useful because it allows us to vary
the form which it validates.

e One small feature we can add is for the Submit button to be disabled unless
the Terms and Conditions checkbox is checked. We do that by writing a
new function called toggle () which we assign as an event handler for the
onclick attribute of the checkbox. The toggle () function is written like
so:

function toggle()

{
if (document.forms.registration.button.disabled)
document.forms.registration.button.disabled = false;
else
document.forms.registration.button.disabled = true;
b

All this logic does is to enable or disable the Submit button depending on
whether it was disabled or enabled when the checkbox was clicked.

e The only enhancement we’ve made in form6.html is to put the toggle ()
function’s logic inline:

<input name="agreement" onclick="document.forms.registration.button.disabled =
ldocument.forms.registration.button.disabled;" type="checkbox" />

e In form7.html, we finally get down to the business of form validation
using regular expressions:

if (!document.forms.registration.email.value.match(/.+@.+\.edu$/))
{

alert("You must provide a .edu email adddress.");

return false;



Computer Science 75 Lecture 7: March 30, 2009
Spring 2009 Andrew Sellergren
Scribe Notes

What we're leveraging here is the fact that in JavaScript, every string
has a built-in method called match() that takes as its input a regular
expression. In this case, we're saying if the string doesn’t contain .edu as
a suffix, then spit out an error accordingly.

e If you know you're going to be using a regular expression a number of
times, you can define it as an object of type RegExp and compile it so
that it can be quickly invoked.

e Let’s say we wanted to put our error message inline rather than in an
annoying alert box. We could create a div with ID message, then add the
following lines of code to our if statement:

if (!document.forms.registration.email.value.match(/.+@.+\.edu$/))
{

var el = document.getElementById(’message’) ;

el.InnerHTML = "Invalid e-mail!";

return false;

}

This is actually the unofficial way of inserting content into a webpage,
but it happens to be faster than the official way, which is to use the
createElement and addAttribute methods.

e This is a good opportunity to extol the virtues of Firebug, an amazingly
powerful tool for web developers. Not only does it allow you to debug
JavaScript, but it also allows you to rifle through the DOM. Another useful
tool is JavaScript Debugger, which tends to catch some of the errors which
Firebug doesn’t.

e David, for example, used Firebug just the other day to figure out how
Google Maps positions its buttons on its map interface using CSS since
he wanted to replicate this for his HarvardMaps project.

e Here’s a small sample of the events for which we can assign handlers:

— onblur

— onchange

— onclick

— onfocus

— onkeydown
— onkeyup

— onload

— onmousedown

— onmouseup

10



Computer Science 75 Lecture 7: March 30, 2009
Spring 2009 Andrew Sellergren
Scribe Notes

— onmouseout
— onmouseover
— onmouseup
— onresize

— onselect

— onsubmit

e Consider David’s autocomplete feature on the HarvardMaps project. Why
wouldn’t it be a good idea to show autocomplete options the very moment
that the user begins typing? If we take a look at Live HTTP Headers
when we're typing into the search box, we see that a half-finished query
is actually sent to the server to provide suggestions. For performance
reasons, then, it makes sense only to query when the user has paused in
his typing to avoid unnecessary requests to the server.

e Of course, there’s the option to preload all the search suggestions on the
client-side to avoid requests to the server at all. With a small amount of
data, such as the 600 or so buildings on Harvard’s campus, there’s no real
performance gain for doing this even though it would be easy to load it
up when the page loads. For very large datasets, such as Google searches,
for example, this isn’t really a practical possibility.

e With JavaScript, you can also change the style attribute of your DOM
nodes. If you wanted to hide an element, for example, you'd change its
display property under style from block, the default, to none. This is
what’s going on underneath the hood for the HarvardEvents page when
you toggle one of the events. Another style element, visible, allows you
to hide an element but still display the amount of space that it would
normally take up if it weren’t hidden.

e You should know that there’s a conversion you need to make between CSS
style element names and their counterparts in JavaScript. Some CSS style
elements have names with hyphens in them, which would equate to minus
signs on JavaScript if they weren’t translated. The general rule is that
if you have a style element named font-size in CSS, the corresponding
JavaScript name is fontSize.

e Although the blink feature was arguably annoying, it’s a shame that it
was removed because it can still prove useful in some scenarios. To re-
implement this feature, as David did for CS 50’s site, in which office hours
that were going on would blink to catch the user’s attention, try the
following function:

function blinker()

{
var blinks = document.getElementsByName ("blink");

11



Computer Science 75 Lecture 7: March 30, 2009
Spring 2009 Andrew Sellergren
Scribe Notes

for (var i = 0; i < blinks.length; i++)

{
if (blinks[i].style.visibility == "visible")
blinks[i].style.visibility = "hidden";
else
blinks[i].style.visibility = "visible";
}

The method getElementsByName returns an array which we loop through,
toggling the visibility property.

e The problem we’ll run into next, though, is that the div will only blink
once if we don’t find some way to call the function over and over again.
Turns out we can do this by using a method called setInterval:

YAHOO.util.Event.addListener (window, "load", function() {
window.setInterval("blinker ()", 500);
b;

Here, we're calling the blinker () function every 500 milliseconds as soon
as the page loads. The function is actually anonymous or lambda in that
it has no name. This is useful if we think that we’re never going to call
this function again, so there’s no need to store a pointer for it.

e The YUI library provides a great way to interface with JavaScript and the
DOM across multiple browsers. Check out this list of other JavaScript
libraries:

— Dojo

— Ext JS

— JQuery

— MooTools
Prototype

script.aculo.us
— YUI

12


http://dojotoolkit.org/
http://extjs.com/
http://jquery.com/
http://mootools.net/
http://www.prototypejs.org/
http://script.aculo.us/
http://developer.yahoo.com/yui/

	David's Extracurricular Exploits (0:00--14:00)
	Introduction to JavaScript(14:00--23:00)
	JavaScript Syntax (23:00--53:00)
	Form Validation and More (53:00--10:00)

