
Computer Science 75
Spring 2009
Scribe Notes

Lecture 6: March 16, 2009
Andrew Sellergren

Contents

1 Announcements (0:00–2:00) 2

2 Why SQL? (2:00–8:00) 2

3 More on Sessions (8:00–43:00) 2

4 More SQL! (43:00–10:00) 4

1

Computer Science 75
Spring 2009
Scribe Notes

Lecture 6: March 16, 2009
Andrew Sellergren

1 Announcements (0:00–2:00)

• Grab yourself a Happy Cat!

• Bug of the Week: Bank of America showcased what was hopefully just an
aesthetic bug presumably resulting from Daylight Savings Time. Can you
spot the bug here?

2 Why SQL? (2:00–8:00)

• Why use a database engine? Recall several reasons we discussed: opti-
mizing data processing, enabling access for multiple users, and enhancing
security practices.

• The magic missing slide from last week! Don’t worry, nothing special, just
MySQL data types, which you can read more about here. Pay particular
attention to the notes on storage requirements, which detail how much
data can be stored in each type.

• Last week we used the VARCHAR data type to store a name in our database.
In contrast to the CHAR data type, the amount of space required to store
a VARCHAR is variable. The downside of this, as we discussed, is longer
lookup time.

• What data type might you think to use to store the amount of a cash in a
user’s account for Project 2? Perhaps DECIMAL or FLOAT. With DECIMAL,
you can specify the precision of the variable so that your implementation
isn’t prone to rounding errors.1

3 More on Sessions (8:00–43:00)

• Recall from Lecture 2 that login functionality can be implemented purely
using PHP. We did this using sessions, as you now know. Sessions are
server-side storage of arbitrary key-value pairs that are associated with
users by way of cookies. When you visit our dinky little login page, the
function session_start() is called and a very large pseudorandom num-
ber is generated to be stored in a cookie that will be sent to the user in
the HTTP headers. The user’s browser will then send that cookie back
to the server for each request it makes. The cookie itself is stored on the
server in a text file usually named sess_*, where * is a very large number,
and usually located in the /tmp directory.

• Session hijacking is a security concern you should be aware of. It can
occur anytime a user’s session ID is compromised. Using only that session
ID, a malicious user can impersonate a legitimate user.

1It’s called salami slicing. No joke.

2

http://www.lolmart.com/happycatplush1.html
http://www.cs75.net/lectures/6/demos/boa_error.jpg
http://dev.mysql.com/doc/refman/5.0/en/data-types.html
http://en.wikipedia.org/wiki/Salami_slicing

Computer Science 75
Spring 2009
Scribe Notes

Lecture 6: March 16, 2009
Andrew Sellergren

• What exactly is PHP doing when you store a value in the $_SESSION
superglobal? It’s serializing the value. That is, it’s converting it to a
string such that when it gets read back in by the interpreter, all of the
information that was previously in memory will be restored. For example,
if we were to write the following line of code:

$_SESSION["foo"] = "bar";

the data might be stored in the following format:

{s: 3: "bar"}

Basically, this says that the data is a string of length 3 containing the
letters “bar.” Note that this is probably not perfectly representative of
how PHP serializes the data, but it’s a good, instructive example. If you’re
ever curious how PHP stores some of your data in a cookie, feed it into
the serialize() function and pay attention to its output. This function
could even enable you to store objects as strings in your database.

• There’s a special kind of cookie known as a session cookie that has a liftime
of 0, meaning that it won’t be stored at all on the server, but rather will
be destroyed as soon as the browser is closed. Generally, the lifetime of a
cookie is more on the order of a week.

• Question: what happens if you write an infinite loop in your PHP script?
Most likely, it will be killed by the browser or the server, probably after
30 seconds or so.

• Question: what happens if you write an infinite redirect loop, either in
your PHP file or in a .htaccess file? This one tends to get by servers
more often than not, but browsers such as Firefox are now trained to catch
this error.

• Question: generally, it’s a good assumption that nothing in PHP will
persist in RAM. This is in contrast to Java, which has the concept of
shared memory space.

• You’ll need to call session_start() at the top of every PHP file for which
you want a cookie to be sent to the user via the “Set-cookie:” HTTP
header. As you might’ve already read on the Bulletin Board, you’ll get a
“Headers already sent” error if you have any output (including whitespace
and output in helper files!) before this function call. This is, of course,
because by the time you’re beginning to output anything to the browser,
the delimiter between headers and content, a newline character, for ex-
ample, has already been sent. This can create a problem even if you are
executing pure PHP code before calling session_start(). If there’s an
error in your code, this error might be output to the browser and will
interrupt your establishment of a session.

3

Computer Science 75
Spring 2009
Scribe Notes

Lecture 6: March 16, 2009
Andrew Sellergren

4 More SQL! (43:00–10:00)

• Just to get our semantics straight, be sure you recognize the difference
between a database server and a database, although we might use the
term “database” to refer to either. Basically, the database server is a server
like any other but one which hosts multiple databases. For example, the
database server you’ll be using for Project 2 is cs75.net, but the actual
database(s) will be of the naming scheme username_*.

• Generally, it’s good practice to have separate databases for separate ap-
plications so as to explicitly control who has access to what information.

• As we did in lecture once previously, we can use DirectAdmin to create a
new database and assign a new user to that database.

• When we’re specifying arguments for mysql_connect(), there are two
ways we can refer to the database server. Since cs75.net is both a web
server and a database server, we can refer to it as localhost or 127.0.0.1.
This is probably best since if you’re developing on your home computer
using XAMPP, you’ll also be specifying the hostname as localhost or
127.0.0.1. If you’re so inclined, however, you can refer to the course’s
database server as cs75.net.

• Developing on your home computer is a great option because you’ll be
able to export your entire database to a single .sql file and import it on
the course’s database server using phpMyAdmin.

• So if we’ve created a database called malan_monday and assigned a user-
name malan_monday with password passwrd to it, our connection info will
look like so:

// connect to database
if (($connection = mysql_connect("localhost",

"malan_monday",
"passwrd")) === FALSE)

die("Could not connect to database");

// select database
if (mysql_select_db("malan_monday", $connection) === FALSE)

die("Could not select database");

• Whereas previously, we were hardcoding in the values jharvard and
crimson for the username and password check, now we’re actually go-
ing to be doing some lookup. We need to know whether the username and
password provided by the user via the $_POST variable are actually in our
database. We’ll do this by creating a SQL query like so:

4

Computer Science 75
Spring 2009
Scribe Notes

Lecture 6: March 16, 2009
Andrew Sellergren

// prepare SQL
$sql = sprintf("SELECT * FROM users WHERE user=’%s’",

mysql_real_escape_string($_POST["user"]));

The sprintf() function is way of dynamically generating strings in PHP.
It takes as its first argument the base string from which the output string
will be generated, including placeholders like %s, which specify what type
of variable will be input, along with one or more other arguments specify-
ing what variable is to be input into the string. In this case, we’re filling
in the username with the contents of the $_POST superglobal. Note that
we’re also escaping the user input to prevent SQL injection attacks.

• We could’ve used the concatenation operator instead of the sprintf()
function. The latter tends to be a little cleaner even if it entails additional
overhead from the function call.

• Question: because there’s no concept of namespaces in PHP, the conven-
tion is to name related functions with a prefix that identifies them. For
example, all the MySQL-related functions begin with the prefix mysql_.

• Why bother creating a separate variable that contains our SQL query as
a string? It makes for easy debugging if we need to print it out to make
sure it’s well-formed.

• What are we selecting from our database? We’re using the * operator,
which means all, but what’s the actual number we’re expecting? In this
case, 0 or 1 because we expect usernames, if they exist in the database,
to be unique. So once we query the database, we’ll be checking that an
actual result was returned:

// execute query
$result = mysql_query($sql);
if ($result === FALSE)

die("Could not query database");

// check whether we found a row
if (mysql_num_rows($result) == 1) {...}

Once we execute the SQL statement using the mysql_query() function,
which by default will use the last database handle created by mysql_connect(),
we can test the number of rows in our result set using the mysql_num_rows()
function. If the number of results is exactly 1, then we have a match in
our database and we can proceed to check it against the user input for
password.

• We access the result set using the mysql_fetch_assoc() function, which
returns an associative array containing the next row in our result set.
Here, we’ve assigned that row to the $row variable, which we then access
like any other array in PHP:

5

Computer Science 75
Spring 2009
Scribe Notes

Lecture 6: March 16, 2009
Andrew Sellergren

// fetch row
$row = mysql_fetch_assoc($result);

// check password
if ($row["pass"] == $_POST["pass"]) {...}

As you can see, the fields in the $row array will be indexed by column
name since we’ve specified that we want an associative array.

• The rest of the code is actually identical to what it was before in that it
redirects the user appropriately.

• What happens, though, when we try to execute our login script? We get
the error “Could not query database.” It should be pretty obvious at
this point that we’re running into problems because our newly created
database doesn’t actually contain any data.

• Now we’ll add a users table to our malan_monday database. We’ll do this
as we did last week for Project 1 except we’ll specify two fields named
user and pass. We’ll specify them as CHAR(8) and NOT NULL.

• Next to the “Extra” column for fields, you’ll see a series of radio buttons
with pictures above them. The one with the key symbol specifies that
the field will be a PRIMARY KEY for the table. This means that this field
will be unique for every row in the table. This has positive performance
implications since we will be able to quickly lookup any row in the table
using this field. For our purposes, the user field can act as this primary
key.

• What problems might we run into if we specify the user field as a primary
key, however? Consider that we’ve indicated that usernames can be up to
8 characters long. That means in order to do lookup in the users table,
we must pattern-match 8 characters. A better solution might be to use a
numeric ID as our primary key. For now, we’ll keep it simple.

• Now when we try to login using login5.php, we no longer get the “Could
not query” error. But nothing happens. Well, we obviously need to add
an entry into the users table. Let’s add jharvard with password crimson
using phpMyAdmin’s Insert tab. Just for reference, the form of the SQL
statement that’s actually executed is as follows:

INSERT INTO users VALUES(‘jharvard‘, ‘crimson‘);

Note that those single quotes are actually backticks (however they might
appear in these notes).

• Let’s leverage the SQL database engine to do the comparison of username
and password. Take a look at the following lines of code from login6.php:

6

Computer Science 75
Spring 2009
Scribe Notes

Lecture 6: March 16, 2009
Andrew Sellergren

// prepare SQL
$sql = sprintf("SELECT 1 FROM users WHERE user=’%s’ AND pass=’%s’",

mysql_real_escape_string($_POST["user"]),
mysql_real_escape_string($_POST["pass"]));

// execute query
$result = mysql_query($sql);
if ($result === FALSE)

die("Could not query database");

// check whether we found a row
if (mysql_num_rows($result) == 1) {...}

Notice that now we’re comparing both username and password to the
fields in the database. Now, we know that if we get any results back at all
from our query, it must be because both username and password matched.

• Question: what if two users have the same username? This actually isn’t
possible given our database schema, since the user field has a primary
key constraint.

• What other problems arise from our database schema? As you might’ve
guessed, the fact that we’re not encrypting any of the data in our database
presents a security risk. If someone gets into our database, they have a
whole slew of sensitive data at their fingertips.

• So let’s add some encryption. In login7.php, we’re using the built-in SQL
function called PASSWORD. This is a form of one-way encryption which will
take the user’s password and store an encrypted version of it rather than
the password itself. Then, when we go to look it up in our database, we
will encrypt the user’s input and compare it against the stored, encrypted
value. In this way, if the database is compromised, the user’s passwords
are not immediately compromised because the malicious user has no way
of knowing what values were fed to the encryption function in the first
place.

• That being said, the PASSWORD function is not very secure. It can be pretty
easily cracked, so anyone with malicious intent and too much time on his
hands might still abscond with your users’ information.

• One other problem we’ll run into now that we’re using the PASSWORD func-
tion is with our 8-character length limit. What the PASSWORD function
actually does is to convert a short password into a much longer pseudo-
random sequence of characters, so in order to accommodate that length,
we’re going to have to change the data type of our pass field. To do
this, simply click on the pencil icon next to the field on the Structure tab
and select an appropriate data type from the dropdown menu. Perhaps
PASSWORD would be appropriate, with a length longer than 8.

7

Computer Science 75
Spring 2009
Scribe Notes

Lecture 6: March 16, 2009
Andrew Sellergren

• Slightly more secure than the PASSWORD function is the AES_ENCRYPT func-
tion, which also native to MySQL. This function takes two arguments, the
string to encrypt and a secret key by which the string will be encrypted.
This secret key might be hardcoded, as it is in the case of login8.php,
or it might be user-provided. For example, you might choose to use the
user’s password as a key to encrypt the very same password. In that way, a
malicious user must know the password in order to decrypt the password.
A Catch-22 of sorts. Other methods include using the username, for the
secret key. Take care, however, that the method you use is ultimately
deterministic. That is, it must be reproducible. If you used the current
time as a secret key, for example, you wouldn’t be able to match against
the database the next time the user logged in.

• Note that it’s hard to mount a mathematical argument which would sup-
port using the user’s password as its own key, but it’s a useful heuristic
nonetheless. Realize, also, that you’ll never be able to recover passwords
if you use this method. Rather, you’ll simply have to overwrite them and
let users change them the next time they log in. DUCY?

• Question: why do banks and other sites require non-standard characters
in passwords to strengthen them? If users only rely on alphabetical char-
acters to create passwords, a brute-force method of cracking them will
take less time given that there are only 26 possible characters to choose
from.

• Question: how are password strength functions implemented? Most likely
in a scripting language like PHP—probably not in SQL.

• PASSWORD and AES_ENCRYPT are the first of many built-in MySQL func-
tions which we’ll make use of. Others include AVERAGE and SUM, along
with multiple functions that format dates and times in human-readable
fashion.

• In terms of database design, how might we begin to implement the stock
portfolio for Project 2? We might think to have one single table which
has a user’s username and password as fields along with multiple fields for
the stocks they own, but what would be the problem with this approach?
Obviously, we would have to decide ahead of time what the maximum
number of stocks a user could own would be. In addition, any user who
didn’t own the maximum number of stocks would have a lot of wasted
space associated with them in the database.

• A better solution would be to have a separate table, perhaps named
portfolio, to hold a stock symbol and the quantity of a stock which
a user owns. One of the fields in that table, then, should be a user ID or
one which uniquely identifies the user in our users table. Conceptually,
you can see that this is how we lookup data. The primary key in the

8

http://www.urbandictionary.com/define.php?term=DUCY

Computer Science 75
Spring 2009
Scribe Notes

Lecture 6: March 16, 2009
Andrew Sellergren

users table will become the means by which we identify users in all other
tables. In SQL, this operation is called a JOIN.

• Any time you find yourself repeating data in a table, you’ve come across
an opportunity to normalize your database. This is simply the process
of splitting a single table into multiple tables as we’ve already done with
the users and portfolio tables. In most cases, this will optimize your
database for lookup time as well as storage space.

• What’s arguably inefficient about our database design for Project 2? For
each user who owns a given stock, we’re repeating the stock symbol in
our portfolio table. However, consider that the stock symbol is quite
short and we wouldn’t be saving much time or space by factoring stocks
out into another table and identifying them by an integer. At some point,
programmatic convenience comes into play when you’re making database
design decisions.

• Imagine, for example, that we have a company database wherein employ-
ees are identified by an ID number and employee orders are being tracked.
We might maintain two different tables for employees and orders because
we don’t want to repeat certain information like an employee’s name for
every single order. For efficiency’s sake, we split up this information, but
when we want to access that information, we need to join it back up. The
query below will accomplish just this:

SELECT Employees.Name, Orders.Product
FROM Employees, Orders
WHERE Employees.Employee_ID=Orders.Employee_ID

• The query above is what’s known as an implicit join. We can also rewrite
it using an explicit join:

SELECT Employees.Name, Orders.Product
FROM Employees
JOIN Orders ON Employees.Employee_ID=Orders.Employee_ID

• Let’s talk about race conditions again. As an analogy, consider the situ-
ation where you and your roommate both very much enjoy the taste of
milk.2 On a given day when you’ve run out of milk, you leave to go to
the store and buy more. While you’re gone, your roommate also discovers
that you’re out of milk and leaves to go to a separate store to buy more
milk. Now when you meet up upon returning, you have more milk than
you wanted or needed.

• In this case, checking the contents of the refrigerator and refilling the
refrigerator are not atomic. That is, they are two separate operations.
The state of our variable changed in the middle of our updating it.

2What a mad, mad world this would be.

9

Computer Science 75
Spring 2009
Scribe Notes

Lecture 6: March 16, 2009
Andrew Sellergren

• If a malicious user wanted to exploit this problem in your database design,
he might open two instances of your website. At almost the exact same
time, he asks to buy 10 shares of Google. On the first instance, the balance
check returns an amount sufficient to buy those ten shares, say, $10,000
dollars. In the middle of updating the balance to reflect the deduction from
the purchase, the server switches back over to the other instance which
then checks the balance of the user’s account. Since it hasn’t been updated
by the first instance yet, this second balance check returns $10,000 dollars
as well. Now, the user might get 20 stocks for the price of 10. You could
imagine this same scenario occurring with two ATM’s that were side by
side if the bank weren’t checking for this kind of race condition.

• One way to avoid this race condition in SQL is the INSERT... ON DUPLICATE
KEY UPDATE syntax. What this says, basically, is “try to insert a row, but
if there is already one there with the same primary key, then simply up-
date the row that’s already there.” Because this is one SQL statement, it
is, by definition, atomic.

• The other solution to the race condition problem is transactions. A trans-
action allows you to execute several SQL statements as if they were a
single SQL statement. That is, atomically. Note that the default MySQL
database engine, MyISAM, doesn’t support transactions, so you’ll need
to change your engine type to something like InnoDB. The syntax for a
transaction is as follows:

START TRANSACTION;
UPDATE account SET balance = balance - 1000 WHERE number = 2;
UPDATE account SET balance = balance + 1000 WHERE number = 1;
SELECT balance FROM account WHERE number = 2;
suppose account #2 has a negative balance!
ROLLBACK;

The ROLLBACK keyword, as opposed to COMMIT allows you to undo a trans-
action even after you’ve completed it. You would also need to specify some
CASE where account #2 had a negative balance in the example above.

• To be clear, InnoDB implements row-level locking, which makes transac-
tions possible. To accomplish somethign similar in MyISAM, you must
use locks explicitly. The syntax for this is as follows:

LOCK TABLES account WRITE;
SELECT balance FROM account WHERE number = 2;
UPDATE account SET balance = 1500 WHERE number = 2;
UNLOCK TABLES;

With InnoDB, multiple users can touch the same table at the same time
assuming they’re altering different rows. With MyISAM, however, the

10

Computer Science 75
Spring 2009
Scribe Notes

Lecture 6: March 16, 2009
Andrew Sellergren

entire table must be locked. MyISAM tends to be faster, but it is at a
disadvantage for not having transactions.

• For Project 2, check out the PHP function fgetscsv() function!

11

	Announcements (0:00--2:00)
	Why SQL? (2:00--8:00)
	More on Sessions (8:00--43:00)
	More SQL! (43:00--10:00)

