
Computer Science 75
Spring 2009
Scribe Notes

Lecture 5: March 9, 2009
Andrew Sellergren

Contents

1 Announcements (0:00–2:00) 2

2 Quick Examples (2:00–8:00) 2

3 A Quick Word about Grading (8:00–10:00) 3

4 Lolcat of teh Day! (10:00–30:00) 4

5 A Little Bit More with XML and CSV (30:00–65:00) 6

6 Finally, SQL (65:00–105:00) 11

1



Computer Science 75
Spring 2009
Scribe Notes

Lecture 5: March 9, 2009
Andrew Sellergren

1 Announcements (0:00–2:00)

• Project 1 is due on March 16, 2009 at noon!

• When using the Bulletin Board (please do!), be sure to search for previous
posts pertaining to your question before posting your own.

• Avail yourself of the scribe notes1 so that you don’t have to suffer the
tedium of scribbling down every little tidbit during lecture.2

2 Quick Examples (2:00–8:00)

• What can we learn from the example of Domino’s online ordering system?
When we access it, the URL in our browser looks something like the
following:

http://www28.order.dominos.com/.../login.jsp;jsessionid=13659CF85996...

First, we see that the URL doesn’t begin with https, so we know that
they’re not using SSL for possibly sensitive information. Second, we see
that the extension of their webpage is .jsp, so we know they’re using a
Java environment. Third, we see that a long alphanumeric string is being
passed, so it seems that Domino’s is opting to send cookies via the URL
rather than the headers. Finally, (and perhaps David’s original point),
the URL begins with www28, which indicates that Domino’s is doing load-
balancing in a potentially troublesome way, by hardcoding the specific
server to which traffic is being directed. What happens, for example, if
that particular server goes down and the user tries to access the same
URL? Dead end. The better solution is to load balance behind the scenes.
In this way, the URL will appear to users the same no matter which server
their traffic is directed to.

• At the risk of picking on Domino’s too much,3 we have another fun exam-
ple:

1Wow, so meta.
2Leave that tedium to me.
3Really, though, David should realize that the sword is double-edged. How often are you

ordering from Domino’s in order to notice all these bugs?

2



Computer Science 75
Spring 2009
Scribe Notes

Lecture 5: March 9, 2009
Andrew Sellergren

Notice that some kind of formatting error has occurred such that the price
of the Buffalo Chicken Kickers is not being displayed with two digits after
the decimal point.

• Moving on to pick on The Wall Street Journal, we can see here that the
form requires that the user input his account number without spaces,
hyphens, or slashes. Frankly, this is just lazy. It’s very easy to take care
of this parsing server-side or even client-side, so why trouble the user with
it? Can you think of a way in PHP to remove spaces, hyphens, and slashes
from a user’s input?

3 A Quick Word about Grading (8:00–10:00)

• As you can see from page 1<6 of the Project 1 Specification, grading will
be done along three axes:

– Correctness

– Design

– Style

• A further note, Correctness, Design, and Style will be weighted in the
ration of 3:2:1 and will each be measured along a five-point scale as follows:

– poor (1)

– fair (2)

3

http://www.cs75.net/lectures/5/demos/wsj.jpg


Computer Science 75
Spring 2009
Scribe Notes

Lecture 5: March 9, 2009
Andrew Sellergren

– good (3)

– better (4)

– best (5)

• Know that we’ll normalize grades across sections and ultimately we’ll take
into account improvement throughout the semester. That is, we’ll be much
more inclined to give breaks if we can see that you’re trending upward from
Project 1 to Project 3.

• Overall, the focus of grades is merely to make you realize that no sample
of code is perfect (even that generated by the staff), so there’s always
room for improvement.

• Don’t hesitate to reach out to your assigned TF or to help@cs75.net if
you have more specific or private questions about grading.

4 Lolcat of teh Day! (10:00–30:00)

• If you haven’t already, be sure to buy yourself a Happy Cat Plush Doll
from the LOLMart. David is not ashamed to admit that he already has!

• So how do we go about implementing the lolcat of teh day? Let’s take a
look at the code below:

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Lolcat of teh Day</title>

</head>
<body>
<div align="center" style="padding: 20px;">
<h1>Lolcat of teh Day</h1>
<?

$xml = new SimpleXMLElement(file_get_contents("http://
feedproxy.google.com/ICanHasCheezburger?format=xml"));

$item = $xml->channel->item[0];
preg_match("/^.* - (.*)</", $item->description, $matches);
$alt = htmlspecialchars($matches[1], ENT_QUOTES);
$link = $item->link;
foreach ($item->children("http://search.yahoo.com/mrss/")
as $content)

{

4

http://www.lolmart.com/happycatplush1.html


Computer Science 75
Spring 2009
Scribe Notes

Lecture 5: March 9, 2009
Andrew Sellergren

$attributes = $content->attributes();
$src = $attributes["url"];

}
print("<a href=’{$link}’><img alt=’{$alt}’
border=’0’ src=’{$src}’ /></a>");

?>
</div>

</body>
</html>

First we have some XHTML that simply spits out a template for displaying
the image. Second, we’re grabbing the RSS feed in XML format just as last
week we were grabbing our own XML file using the file_get_contents()
function. What about the next line of code?

$item = $xml->channel->item[0];

Here, we’re taking a bit of a leap of faith in assuming that the lolcat will
always be the first item under the channel tag. Obviously, this is not
extensible since if the site changes the format of their RSS feed, our code
will break. Moving on:

preg_match("/^.* - (.*)</", $item->description, $matches);
$alt = htmlspecialchars($matches[1], ENT_QUOTES);

In the first line, we’re doing some regular expression matching. We’re
saying that the item description that we’re interested in is going to start
with some amount of text (hence the first .*) which will be followed by a
hyphen and then another amount of text (this time, the (.*)) followed by
a left-angle bracket. What’s the significance of the parentheses? Basically,
our regular expression will be matching for the above content but it will
also be saving, in the array $matches we’ve specified, everything that’s
between the two parentheses. For our purposes, this is the caption of the
lolcat, which is precisely what we want to capture. After we’ve gotten
the caption, we’re calling the htmlspecialchars() function, which will
automatically escape certain characters like ampersands so that it doesn’t
invalidate our XHTML when we include it in the alt attribute of the img
tag. The ENT_QUOTES specifies that we’re worried about quotation marks,
in particular. Note that the 1 index of the $matches array is due to the
fact that all matches to our regular expression are by default stored in the
0 index of the array whereas the caption that we’re interested in will be
stored at the 1 index.

• What’s the deal with the quoted URL that appears in parentheses next
to the children element we’re referencing in the foreach loop? Suffice it

5



Computer Science 75
Spring 2009
Scribe Notes

Lecture 5: March 9, 2009
Andrew Sellergren

to say that there’s an aspect of XML called namespaces that we haven’t
mentioned yet. Don’t worry too much about this, just know that in this
context we want to access the Yahoo namespace, which specifies a certain
format for writing the children.

• Once we’ve duplicated all the attributes, we’re ready to spit out the image
and its link. Hence the call to the print() function. And that’s it!

• A few points about the regular expression. First, we’re ending the expres-
sion with a left-angle bracket. Technically, the lolcat folks have abused
XML by using the HTML escape character for the left-angle bracket
(&lt;). What they should’ve done is to use the <![CDATA[...]] tag.
Also, David’s regular expression could stand to be a little more precise.
Instead of the first .*, it might’ve been better to put [^\-]*, which would
match all characters except a hyphen. Can you see why?

5 A Little Bit More with XML and CSV (30:00–65:00)

• Databases are all about persistence of data.4 Project 1 invokes a database
of sorts in the form of an XML file. There’s no read/write access and no
local storage, however. In Project 2, we’ll ask you to empower users to
register themselves as well as make purchases which will be “remembered”
by the server from visit to visit.

• One of the ways we’ll be storing persistent data is a SQL (Structured
Query Language) database. This is generally pretty easy to get up and
running, but there are some caveats. You might need root access on the
server, for example, which isn’t always possible if the server is shared
and you might also incur unwanted overhead in accessing the database.
Because of these caveats, it’s important to realize that you do have alter-
natives.

• One alternative is the CSV file format. For Project 2, we’ll find that Yahoo
Finance allows us to download realtime data in CSV file format. Variables
such as stock symbol and price are simply separated by commas, making
the data very easy to parse.

• Let’s say we want to store persistently the contents of a user’s shopping
cart. Amazon does this, for example, even if your visits to its site are
separated by months or longer. How do they do this? They can’t use the
$_SESSION variable, of course, because eventually that data goes away.
The cookie will certainly have some expiration date which might even be
as soon as the browser is closed. Instead, then, you might use a CSV
file to store the data on the server’s disk. The password files on Unix
servers implement data storage in a similar fashion using colons to separate
usernames and passwords.

4LDO.

6



Computer Science 75
Spring 2009
Scribe Notes

Lecture 5: March 9, 2009
Andrew Sellergren

• What else could we use? XML has the advantage of being self-evident.
That is, unlike CSV, the structure of the data is stored along with the
data. Thus, you can infer from it what the fields are. This metadata is
what XPath leverages in order to get quick access to the data contained
within an XML file.

• Thus if you wanted to implement a database in XML, you could certainly
do that. That’s what we’re doing effectively for Project 1. In fact, the
SimpleXMLElement has a method called asXML which allows you to output
your data as an XML string quite easily.

• Realize that there’s no particular advantage to storing menus and other
data which remains the same across multiple users’ pages because sessions
are not actually stored in any kind of virtual memory. Rather, they are
written to and read from disk in a temporary directory.

• Let’s take a look at a real-life example of using XML databases which is
very similar to Project 1. Not too long ago, David and his fellow colleagus
were subjected to the horror of e-mailing their lunch orders from Rebecca’s
Cafe to an administrator who was in charge of placing all the orders. David
thought, “This is a job for XML!”5

• One night at 10 PM, David went through the painstaking process of mod-
eling the menu using XML. The biggest problem, as it turned out, was
that users can create their own sandwiches. Thus, David, had to create a
fillings tag and a breads tag and a cheeses tag, etc, to encompass all
the different sandwich-building options. This was no easy task.

• One of the design decisions you’ll notice that David made if you take a
look at menu.xml is to write the description for the pre-made sandwiches
in CDATA tags. Why might he have done this? As it turns out, there
was one simple corner case in which the sandwich description bolded the
words “choice of topping,” so David decided to preserve this emphasis and
to account for the possibility that any sandwich description might have
<strong> tags.

• Take a look at the code for lunch.php, which implements only the Spe-
cialty Sandwiches section of the menu for instructive purposes:

<?
$xml = new SimpleXMLElement(file_get_contents("menu.xml"));

?>

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

5Yes, that’s exactly what David thought. Trust me.

7



Computer Science 75
Spring 2009
Scribe Notes

Lecture 5: March 9, 2009
Andrew Sellergren

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Lunch</title>

</head>
<body>
<form action="sqlite.php" method="post">
<b>Name:</b> <input name="name" type="text" />

<input type="submit" value="Submit Order" />
<br /><br />
<table border="0">
<? foreach ($xml->xpath("/menu/category[@name=’Specialty
Sandwiches’]/item") as $item): ?>
<tr>
<td valign="top"><input id="<?= $item["name"] ?>"
name="item" type="radio" value="<?= $item["name"] ?>" />
</td>
<td>
<label for="<?= $item["name"] ?>">
<b><?= $item["name"] ?></b>
<br />
<?= $item ?>

</label>
</td>

</tr>
<? endforeach ?>

</table>
</form>

</body>
</html>

There isn’t much to it—and it’s a little ugly—but it gets the job done. No-
tice that we’re accessing only the Specialty Sandwich items using XPath.
For each of those items, we’re adding a row in our table, which will lay
things out nicely on the page. One little trick to notice—by using the
label tag, we can allow users to click anywhere in the text next to the
radio button and still select that radio button. A neat feature.

• It’s worth noting that this page isn’t valid XHTML. Tsk tsk. Can you
figure out why?

• So what page is this data being submitted to? You can see that the action
attribute of the form points to csv.php. Let’s take a look at it:

<?

// ensure complete form was submitted

8



Computer Science 75
Spring 2009
Scribe Notes

Lecture 5: March 9, 2009
Andrew Sellergren

if (!isset($_POST["name"]) || !isset($_POST["item"]))
{

header("Location: http://www.cs75.net/lectures/4/src/lunch/lunch.php");
exit;

}

// open CSV file for appending
$handle = fopen("orders.csv", "a");

// acquire exclusive lock
flock($handle, LOCK_EX);

// add order to CSV file
$order = array($_POST["name"], $_POST["item"]);
fputcsv($handle, $order);
fclose($handle);

?>

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Lunch</title>

</head>
<body>
One <?= $_POST["item"] ?> for <?= $_POST["name"] ?>, coming right up!

</body>
</html>

Ultimately, the only thing we’re outputting is the XHTML at the bottom,
beginning with the DTD. Hopefully, though, the data we’re outputting has
also been stored persistently somewhere. As you can see, we’re opening
and writing to a file called orders.csv which accomplishes exactly that.

• The first bit of code is some error-checking. If no order has been submitted,
we redirect the user back to to lunch.php.

• How do we write to this file? First, we make a call to fopen() and pass it
the option "a" in order to use append mode so that the file is not clobbered
each time we write to it. If the file does not exist, fopen() will attempt
to create it.

• Notice we’re also using file locking, which solves the problem posed by
race conditions. If two users submit an order nearly simultaneously, it’s

9



Computer Science 75
Spring 2009
Scribe Notes

Lecture 5: March 9, 2009
Andrew Sellergren

unclear whose data will be written first or whether both orders will be
written at all. Basically, one user will have exclusive privileges for writing
to orders.csv until he finishes at which time the other user will have
exclusive write privileges.

• The beauty of PHP is apparent in the call to function fputcsv(). As
you can see, we don’t have to worry about formatting the CSV output
since the function auto-magically does this for us. The reverse process is
accomplished by fgetcsv(). The function fgetcsv() takes an optional
argument to specify the delimiter, so if you wanted to write a Unix pass-
words file, you could specify a colon rather than a comma.

• Finally, we free up resources by calling fclose() to release the file handle.

• So what if we want to use XML instead of CSV? Take a look at xml.php
to find out how we might do this:

<?

// ensure complete form was submitted
if (!isset($_POST["name"]) || !isset($_POST["item"]))
{

header("Location: http://www.cs75.net/lectures/4/src/lunch/lunch.php");
exit;

}

// open XML file for reading + writing
$handle = fopen("orders.xml", "r+");

// acquire exclusive lock
flock($handle, LOCK_EX);

// read contents of XML file
$contents = fread($handle, filesize("orders.xml"));

// build DOM out of contents
$xml = new SimpleXMLElement($contents);

// add order
$order = $xml->addChild("order");
$order->addChild("name", $_POST["name"]);
$order->addChild("item", $_POST["item"]);

// overwrite original XML file
rewind($handle);
fwrite($handle, $xml->asXML());
fclose($handle);

10



Computer Science 75
Spring 2009
Scribe Notes

Lecture 5: March 9, 2009
Andrew Sellergren

?>

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Lunch</title>

</head>
<body>
One <?= $_POST["item"] ?> for <?= $_POST["name"] ?>, coming right up!

</body>
</html>

Can you spot the differences between this and csv.php? First, we’re
opening a file in "r+" mode, which is for both reading and writing. As
before, we’re using a file lock to prevent race conditions. Next, we’re
reading in all of the contents of the XML file we just opened using a call
to fread() and ultimately creating a SimpleXMLElement object from that
data.

• A quick, but important sidebar: why are we using fread() instead of
file_get_contents()? As it turns out, the latter is too efficient for our
purposes. It opens the file, reads in the data, and then closes the file,
which poses a problem when we’re trying to update it. What happens,
for example, if the file has changed state between the time we’ve closed
it after reading and the time we open it for writing? Bad news. For our
purposes, we’re better off opening the file, reading in the data and then
updating the file before we close the file. This prevents any sort of race
condition.

• The code for adding orders is pretty straightforward. We simply call the
addChild method and specify the name of the child we’re adding and
optionally, that child’s value.

• Why the call to rewind()? Well, if we’re completely rewriting the entire
file after adding the children we wanted, we’re going to have to reset the
file pointer to the beginning of the file. This is what rewind() does.

• Check for yourself that orders.xml is updated when you submit an order.

6 Finally, SQL (65:00–105:00)

• As we’ve discussed, there are problems with implementing databases in
XML and CSV. One of the major ones is this necessity for file locking.
Although XML and CSV might work perfectly fine for a small set of users

11



Computer Science 75
Spring 2009
Scribe Notes

Lecture 5: March 9, 2009
Andrew Sellergren

who will only rarely collide with each other in writing persistent data to a
file, this doesn’t scale very well. What happens when you have hundreds
of thousands of users who all need to write persistent data? Are you going
to make them each wait for all other users to finish writing to the file?
Not likely.

• What you’ll want is some system which implements row-level locking,
not file locking. This is precisely what database engines such as MySQL
achieve. Using MySQL (and other database engines like SQL Server,
Oracle, and PostgreSQL), multiple users can write simultaneously to a
database without colliding with each other and without clobbering each
other’s data.

• The world of relational databases essentially boils down to tables. If you’ve
ever used Microsoft Excel or a spreadsheet at all, you have all the under-
standing you need to begin working with relational databases.

• Those of you who downloaded and installed XAMPP already have an
instance of MySQL up and running on your own machine. By default,
SQL databases use port 3306 so that they are accessible on servers which
also operate as web servers and mail servers.

• At the end of the day, all data in SQL databases is stored in local files.
The advantage of SQL databases over XML and CSV databases, however,
is that when the SQL database engine is first started, most or all of the
data is loaded into virtual memory. In this way, data is much more readily
accessible.

• One of the ways we’ll be interacting with SQL databases in this course is
via phpMyAdmin, a free, open-source GUI. Conveniently, phpMyAdmin,
which is packaged with XAMPP, allows you to create, delete, modify, and
view tables without having to navigate the more arcane command-line
interface.

• Besides the convenient GUI which phpMyAdmin provides, how do we
interact with our MySQL database? Using a whole, new programming
language, of course! Luckily, the learning curve for SQL is not very steep
at all. If it helps, consider the following analogy: XPath is to XML as
SQL is to a relational database.

• The definitive source for MySQL help is the online manual.

• DirectAdmin allows you to create MySQL databases and associate users
with them via the online interface. Once you’ve done that, you can login
to phpMyAdmin as the user you created here. At that point, all of the
databases which that user has access to will be visible.

• Using phpMyAdmin, we can create tables on the database. If we wanted
to implement a table for orders, for example, we might create a table

12

http://dev.mysql.com/doc/refman/5.0/en/
https://cs75.net/phpMyAdmin/


Computer Science 75
Spring 2009
Scribe Notes

Lecture 5: March 9, 2009
Andrew Sellergren

named orders and specify that it will contain 2 fields. We’ll then be
brought to a screen that looks like the following:

For the names of the two fields, we’ll go with name and item as you might
expect. Under type, we’re going to choose VARCHAR. What does this mean
exactly? Well, SQL has a number of different data types. Generally,
we’ll want to choose one that best fits the data that we’re storing so as
to optimize storage and lookup. In this case, the name and item fields
are both strings of indeterminate length. What we can do with SQL is
specify a maximum length for the field. The VARCHAR data type will write
only the minimum number of bytes needed to store that string, up to the
maximum, and no more. Thus, we use the bare minimum of disk space
necessary. For the name field, we’ll specify 255, which is a convention.

• What might be the advantage of using the CHAR data type as opposed
to VARCHAR? As you might’ve guessed, VARCHAR optimizes for space but
CHAR optimizes for lookup time. If we know exactly how long each string
is when it’s stored, we don’t have to search for the ends of strings when
we’re looking up some piece of data.

• The collation option you needn’t worry too much about. Basically, think
of it as the character set. By default, this will actually be Swedish for
MySQL (after the developers), but it will include all of the characters
you’re familiar with. When in doubt, leave collation blank.

• As for attributes, you can infer from its possible values that it doesn’t have
much relevance to strings. If we were using integer data types, however,
the UNSIGNED attribute becomes important. Again, we’ll leave this blank.

• Next is the null characteristic. Here we can specify that a field can never
be written as NULL. This is useful as a second layer of error-checking to
prevent empty names from being written to your database, for example.

• Default allows for a default value, as you might have guessed. Extra has
only one option, auto_increment, which we’ll talk about next week. This
allows for automatic unique identifier generation. Finally, we have some
extra constraints, including indices and primary keys which we can specify
for fields.

• The final option worth noting is the storage engine. Analogous to the
world of file systems, wherein you have multiple options, e.g. FAT32 and

13



Computer Science 75
Spring 2009
Scribe Notes

Lecture 5: March 9, 2009
Andrew Sellergren

NTFS, the world of database engines also has multiple options, e.g. My-
ISAM and InnoDB. Whereas the default MyISAM is arguably the fastest,
it doesn’t implement transactions, which we’ll find useful in the weeks to
come. MyISAM is not very efficient for large datasets since it requires you
to lock an entire table while writing to it.

• Why not simply specify an egregiously large value for VARCHAR length?
Without going into more specifics, just trust us that there are performance
implications for this and it’s not advisable.

• The beauty of phpMyAdmin is that when you interact with your MySQL
server in any way, it will show you the SQL query that is executed. You
would do well to study this SQL code each time you execute a query so
that you can learn SQL along the way!

• Know that phpMyAdmin takes the precaution of adding backtick quotes
‘ before and after every field and table name. This allows you to use pro-
tected words like primary as field and table names so long as you properly
escape them. However, adding these backtick quotes is not explicitly nec-
essary, so you may find David writing SQL queries without them.

• So what’s in our table? If we click the Browse tab, we see that there’s
nothing there. The Insert table provides us with a convenient way of
quickly adding rows to our table. Try adding “David” under name and
“Chicken Salad” under item. When we click Browse now, we can see the
row we added alongside several options, including edit and delete.

• Before we delve into the finer details of how David implemented the actual
database for Rebecca’s Cafe (which he actually did using SQLite), play
around with the production version of the ordering system. You’ll notice
first the much-improved layout and color scheme as well as several features
such as auto-complete which David implemented using JavaScript.

• As we mentioned, David implemented the back end of his ordering system
using SQLite. What he decided that MySQL was too heavy-handed for
such a small-scale use, but that SQL itself provided a very convenient way
of accessing the data. The SQL query he eventually used was as follows:

SELECT DISTINCT name, item, requests FROM orders ORDER BY date ASC

As you can see, SQL is quite easy to read. This query simply says, “give
me all the unique names as well as the items and requests from the orders
table, arranged by ascending date.”

• When you execute a SQL query in PHP, you’ll get an associative array
returned to you. Each of the elements of this array corresponds to one of
the rows in your table. Thus, we can use the foreach() construct.

14

http://www.cs75.net/lectures/5/src/lunch/production/


Computer Science 75
Spring 2009
Scribe Notes

Lecture 5: March 9, 2009
Andrew Sellergren

• Know that David is using the PDO library which enables him to use the
try-catch syntax that might be familiar to you from Java, C++, C#,
JavaScript, etc.

• SQL queries by convention have protected words like SELECT and FROM
in all-caps in order to help visually parse them. However, SQL queries
are case-insensitive.6 More specific queries can be accomplished using the
WHERE clause.

• Let’s take a look at sqlite.php:

<?

// ensure complete form was submitted
if (!isset($_POST["name"]) || !isset($_POST["item"]))
{

header("Location: http://www.cs75.net/lectures/4/src/lunch/lunch.php");
exit;

}

try
{

// open database
$dbh = new PDO("sqlite:orders.db");
$dbh->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

// prepare fields
$name = $dbh->quote($_POST["name"]);
$item = $dbh->quote($_POST["item"]);

// insert order
$dbh->exec("INSERT INTO orders (name, item) VALUES($name, $item)");

}
catch (PDOException $e)
{

die($e->getMessage());
}

?>

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

6Assuming that the lowercase table names variable is set to 1 or 2.

15



Computer Science 75
Spring 2009
Scribe Notes

Lecture 5: March 9, 2009
Andrew Sellergren

<head>
<title>Lunch</title>

</head>
<body>
One <?= $_POST["item"] ?> for <?= $_POST["name"] ?>, coming right up!

</body>
</html>

The first few lines of code allow us to use the PDO library. They’re
basically copied and pasted from the manual for PDO.

• What does the quote() method do? In the PDO library, this actually
prevents something called a SQL injection attack, which you can read
more about here. Err, sorry, here.

• If we access the SQLite command line, we can create a table just as we
did using the phpMyAdmin interface for MySQL. We might execute the
following command, for example:

CREATE TABLE orders (name VARCHAR(255) NOT NULL, item VARCHAR(255) NOT NULL);

We can type .dump to see this command printed out once we’ve executed
it.

• Next time, we’ll take a look at indexes and constraints. These allow us
to find data more quickly because the database engine can optimally sort
the data if it knows how we’re going to be searching for it.

16

http://xkcd.com/327/
http://en.wikipedia.org/wiki/Sql_injection

	Announcements (0:00--2:00)
	Quick Examples (2:00--8:00)
	A Quick Word about Grading (8:00--10:00)
	Lolcat of teh Day! (10:00--30:00)
	A Little Bit More with XML and CSV (30:00--65:00)
	Finally, SQL (65:00--105:00)

