
Computer Science 75
Spring 2009
Scribe Notes

Lecture 2: February 9, 2009
Andrew Sellergren

Contents

1 Announcements (0:00–3:00) 2

2 More with PHP (3:00–37:00) 2

3 Something Completely Different (37:00–39:00) 8

4 Even More PHP (39:00–50:00) 8

5 More TFs! (50:00–52:00) 10

6 Seriously, More PHP? (52:00–61:00) 10

7 Solving More Complex Problems with PHP (61:00–95:00) 12

8 Transition to SSL (95:00–100:00) 18

1

Computer Science 75
Spring 2009
Scribe Notes

Lecture 2: February 9, 2009
Andrew Sellergren

1 Announcements (0:00–3:00)

• Sections will begin this evening! There will be one immediately following
lecture held in Harvard Hall 103. Wednesday’s section, held in 1 Story
Street by Jesse Cohen, will be taped and also streamed live online. The
opportunity to interact with Jesse via instant messaging is being inves-
tigated. Finally, Thursday’s section, held in the Virtual Terminal Room
(VTR) by the Pride of Philadelphia, Chris Power, who will use Voice over
IP (VoIP) technology to showcase his talents (which will also be recorded).

• Section notes, like lecture handouts, will always be posted online.

• We’ll be holding ad hoc office hours throughout the week, especially when
projects are due, to offer the opportunity to ask questions and solicit help
with debugging.

• The Coop will be stocking the recommended course books, if only so that
you may window shop and buy them elsewhere for cheaper!

2 More with PHP (3:00–37:00)

• You might’ve noticed on the course website the box which allows you to
search any one of four online manuals for Apache, PHP, YUI, and MySQL.
Clicking Enter will, by default, search the PHP manual.

• How is this implemented? HTML forms, of course. Let’s review two of
the attributes of forms. The action attribute specifies the URL that
data is submitted to. The method attribute specifies either the GET or
POST method of HTTP requests. Recall that GET has the advantage of
maintaining state in the URL—that is, you are able to link to it directly
and bookmark it. On the other hand, POST has the advantage of not
having length restrictions and also not being plainly visible.

• If we examine the source code of the course website, we can see that
the type of each of these search buttons is button. Ultimately, we’re
leveraging this type in order to take advantage of its clickable property.
In fact, we’re not actually using them as part of PHP form submission, but
rather we’re using JavaScript. What we’re doing is registering an event
handler called onClick. As the name implies, it specifies what happens
when the button is clicked. Notice that in each case, we’re appending the
following to the end of a URL

document.search.q.value

Now you might understand why we set the name attribute of the form
to be search. We can then access this form as an element of the entire
document object.

2

Computer Science 75
Spring 2009
Scribe Notes

Lecture 2: February 9, 2009
Andrew Sellergren

• So which is the default search? In other words, if we enter a query and hit
Enter, which manual’s results are returned. A simple experiment will show
that it’s PHP. But why? Or rather, how? As it turns out, it’s because we
specified the action attribute of the form to refer to the URL of the PHP
manual.

• Why did we choose the GET method? If we go to the online PHP manual
and search it ourselves, we see that the query is passed via the GET method.
If we’re aiming to replicate this, then we don’t so much care whether the
PHP manual supports the POST method or not (although we could figure
out by trial and error) because we already have a method that works.

• What about the JavaScript for the other buttons? Well, since we’re ex-
plicitly redirecting the user to a different URL which we’ve constructed
by appending the search string, we’re in fact still using the GET method.

• There are other types of methods, among them HEAD, which means just
give back the headers. Whether or not a method is supported depends on
how the web server is configured. For example, on an Apache server, this
would be specified in the httpd.conf file, as we examined in Lecture 0.

• If you take a look at the actual URL you’re redirected to when you visit
php.net, you’ll notice that it might actually be either us2.php.net or
us3.php.net. This is an example of load balancing. It appears that the
makers of PHP have at least 3 web servers across which they distribute
their traffic. What’s the downside of this approach? Well, if one web
server goes down, it defeats the purpose of maintaining high availability.

• Your unofficial homework from last week was to figure out why Harvard’s
website can’t be accessed without typing in the www. How might we do
this? We can begin by using the command nslookup. We can notice,
then, that providing the parameter www.harvard.edu gives a so-called
“Non-authoritative answer” which points us to a canonical name. The
non-authoritative refers to the fact that this lookup has been cached and
is not the true source of this address. In contrast, providing the parameter
harvard.edu to nslookup returns no answer whatsoever.

• If we go one step farther and use the dig command, we get the lower-
level DNS configuration information in the form of a zone file. The com-
mand dig www.harvard.edu reveals that an A record exists. In contrast,
dig harvard.edu shows no such A record.

• However, even if we were to fix this by adding an A record for harvard.edu,
this still might not work. If the web server is configured to only serve
up content when the host is www.harvard.edu, then updating the DNS
records won’t be enough to fix the www problem.

• Your next unofficial homework assignment (you have two weeks!): figure
out how to “trick” your browser into finding the correct IP address for

3

php.net
us2.php.net
us3.php.net

Computer Science 75
Spring 2009
Scribe Notes

Lecture 2: February 9, 2009
Andrew Sellergren

harvard.edu even though you don’t have the ability to update the DNS
records.

• One of the powerful features of PHP (among other languages) is regular
expressions. A regular expression is a series of characters which allows for
pattern matching. Regular expressions are especially useful for validating
user input (e.g. passwords, e-mail addresses). For example, if you wanted
to check that a FAS username was valid—hypothetically, if they could
only contain exactly 8 alphabetic characters—you might use the regular
expression [a-zA-Z]{8}. This will include all letters, both uppercase and
lowercase and require that there be exactly 8 in a row.

• If we take a look under the hood of the course website, we can see that it’s
implemented using XML files. These allow us to separate content from
presentation and to exert minimal effort in updating the website when
necessary. For example, when we need to add a new link to the Lectures
section of the website, we simply edit the lectures.xml file rather than
manually editing the actual HTML.

• The homepage of the course website actually has very little code and yet
a considerable amount of content. This is due to the fact that we’ve
gone to great lengths to factor out common code. We can see that none
of the requisite tags (e.g. <html>, <body>, <head>) are actually in the
index.php file. How then, is this valid XHTML? You’ll notice that at
the top and bottom of the file, there are several function calls. These
produce the XHTML code which is common to almost all of the pages of
the website, each of which is simply an index.php file that lives in its own
subdirectory, for simplicity’s sake.

• More specifically, the course pages all contain the following lines at their
tops:

<? require_once(‘‘lib/course/Course.php’’); ?>
<? course()->header(); ?>

As you might predict, this first line means “include the file Course.php”
when you run this code. The second line is what creates the common
content. If we take this second line out, the website looks dramatically
different (and worse).

• Take a look at the code of the footer() function:

public function footer()
{

//use template
require_once("templates/footer.php");

//close database connection

4

Computer Science 75
Spring 2009
Scribe Notes

Lecture 2: February 9, 2009
Andrew Sellergren

if (is_resource($this->link))
{

mysql_close($this->link);
unset($this->link);

}

}

Obviously, this code is doing two things: including a file called footer.php
and closing the connections to a database.

• Following the breadcrumbs and opening footer.php reveals a whole bunch
of XHTML and PHP, as we expected. The Google Analytics script, for
example, is in this file.

• So let’s do some coding. Yippee!

• When you begin a programming project, you’ll usually be faced with some
problem that you’re asked to solve.1 Let’s consider the case of David’s
freshman year2 when the Intramural (IM) sports program required that
you go to a certain door in a certain dorm and slide a registration slip
underneath it. How old-fashioned! David wanted to improve upon this
system, so he quickly wrote up a registration page which we now have the
benefit of mocking. Err, studying.3

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Frosh IMs</title>

</head>
<body>
<div align="center">
<h1>Register for Frosh IMs</h1>

<form action="register.php" method="post">
<table border="0" style="text-align: left;">
<tr>
<td>Name:</td>
<td><input name="name" type="text" /></td>

1Duh, Andrew.
2Scary, I know, to go that far back in time, but just bear with me.
3Truth be told, David wrote the page in Perl, so this PHP version is merely a recreation

of it. But feel free to mock him, anyway.

5

Computer Science 75
Spring 2009
Scribe Notes

Lecture 2: February 9, 2009
Andrew Sellergren

</tr>
<tr>

<td>Captain:</td>
<td><input name="captain" type="checkbox" /></td>

</tr>
<tr>
<td>Gender:</td>
<td><input name="gender" type="radio" value="F" /> F

<input name="gender" type="radio" value="M" /> M
</td>

</tr>
<tr>
<td>Dorm:</td>
<td>
<select name="dorm" size="1">
<option value=""></option>
<option value="Apley Court">Apley Court</option>
<option value="Canaday">Canaday</option>
<option value="Grays">Grays</option>
<option value="Greenough">Greenough</option>
<option value="Hollis">Hollis</option>
<option value="Holworthy">Holworthy</option>
<option value="Hurlbut">Hurlbut</option>
<option value="Lionel">Lionel</option>
<option value="Matthews">Matthews</option>
<option value="Mower">Mower</option>
<option value="Pennypacker">Pennypacker</option>
<option value="Stoughton">Stoughton</option>
<option value="Straus">Straus</option>
<option value="Thayer">Thayer</option>
<option value="Weld">Weld</option>
<option value="Wigglesworth">Wigglesworth</option>

</select>
</td>

</tr>
</table>

<input type="submit" value="Register!" />

</form>
</div>

</body>
</html>

6

Computer Science 75
Spring 2009
Scribe Notes

Lecture 2: February 9, 2009
Andrew Sellergren

Notice first that the entire web page is laid out with invisible tables which
is frowned upon in certain circles. It’s a useful trick, however, because it
aligns content well, even in multiple browsers.

• Where does the data go when we click the Register button? It might go
to a database or a file—for example, we could write it to a CSV file or a
plain ASCII file or an XML file—but for our purposes, handling it directly
in a PHP file is a better option.

• With the action attribute, we’ve specified a file called register.php.
What does this file contain? Well, the short answer is: whatever we want.
Let’s start off simple:

<?php

print("hello, world");

?>

Now, if we go to froshims.html and click Register!, we see that “hello,
world” is printed in the browser.

• Let’s try to display what we’re actually submitting:

<?php

print("<PRE>");
print_r($_POST);

?>

Know that this isn’t a valid web page, but just a testbed. If we go to
froshims.html and enter David, check the captain checkbox, choose the
Male radio button, and select Matthews as the dorm, we get the following
output to our browser:

Array
(

[name] => David
[captain] => on
[gender] => M
[dorm] => Matthews

)

Okay, good, so at least we know it’s working. It’s worth noting that
even this minimal functionality would have been much more difficult to
implement in the old days4 using Perl.

4Think prehistoric since it was David’s freshman year.

7

Computer Science 75
Spring 2009
Scribe Notes

Lecture 2: February 9, 2009
Andrew Sellergren

3 Something Completely Different (37:00–39:00)

• Say hello to our newest staff additions, Jennifer Rogers and Sid Chan-
drasekaran! They’re both freshmen who took CS 50 with David.

• We’re now at 156 students and 9 TFs! w00t.

• Do make use of the bulletin board for questions which other students might
benefit from. If you haven’t already, you’ll get a username and password
to login to the bulletin board within 72 hours of submitting the survey for
Project 0.

4 Even More PHP (39:00–50:00)

• So by convention, the captain checkbox returned a value of on.

• Let’s look at some other tricks in PHP:

<select name="dorm" size="10">

If we change the size attribute of the select box to 10, we can see that
not 1, but now 10 dorm names will be displayed at a time in the scroll
menu.

• What if we wanted to select multiple dorms? Turns out there’s a multiple
attribute:

<select multiple="multiple" name="dorm" size="10">

Oops, but there’s a problem. When we select multiple dorms and click
Register!, not all of the dorm names get transmitted. How can we fix this?
We need to tell PHP that there will multiple values for the dorm variable:

<select multiple="multiple" name="dorm[]" size="10">

These square brackets imply that the dorm variable is going to be its own
array.

• Now, let’s see if we can go about validating the user’s input. We’ll start
simple:

<?php

if($_POST["name"] == "")
print("You must provide your name!");

else if($_POST["gender"] == "")
print("You must provide your gender!");

else

8

http://www.cs75.net/bb/

Computer Science 75
Spring 2009
Scribe Notes

Lecture 2: February 9, 2009
Andrew Sellergren

print("Welcome to the team!");

?>

Theoretically, this will ensure that a user has provided both his name and
his gender. If we enter in appropriate values for all the fields and click
Register!, we see that the “Welcome to the team!” message is printed,
implying that all is well.

• Let’s go one step further and start using regular expressions:

if(preg_match("", $_POST["name"]))

When we change the first if condition to the above, we’ve actually not
changed anything at all in terms of functionality. The preg_match func-
tion takes two arguments: the pattern to be matched and the string to
be matched in. In our case, the first regular expression again checks if no
name has been provided.

• Now we’ll fill in the gaps so that the regular expression is matching a more
specific phrase rather than blank space:

if(!preg_match("/David/", $_POST["name"]))
print("You must provide a David name!");

The convention for regular expressions is to place two forward slashes on
either side of the expression (or any other such token which doesn’t appear
within the expression itself) in order to designate the beginning and end.
Now, if we type Joe into the name field and click Register!, the program
will yell at us to provide David as the name.

• As you might expect, we’ll get the all-is-well message if we provide David
as a name, but in fact also if we provide David Malan. If we want to
match only David, we need to add the following so-called anchors to the
regular expression:

if(!preg_match("/^David$/, $_POST["name"]))

What this requires is that the name provided begins and ends with David.
In other words, only the string David will satisfy these constraints.

• Let’s leverage these anchors in order to utilize more of the power of regular
expressions:

if(!preg_match("/^[a-zA-Z]$/, $_POST["name"]))
print("You must provide an alphabetical name!");

9

Computer Science 75
Spring 2009
Scribe Notes

Lecture 2: February 9, 2009
Andrew Sellergren

As you might’ve surmised, this specifies that the name provided consists
only of alphabetical characters. If we want other characters in there, too,
(such as an exclamation point, for example) we simply start enumerating
them between the square brackets.

• Validating e-mail addresses is one of the first and foremost uses of regular
expressions, but it’s actually been somewhat abused recently. That is,
there are websites which are too stringent in their validation of e-mail
addresses. According to the RFC guidelines, the “+” character is allowed
in e-mail addresses. Yet, some sites block this. The “+” character is useful
for filtering e-mails:

malan+foo@harvard.edu

All mail sent to this e-mail address will still be directed to malan@harvard.edu,
but it will also retain the entire string in the address field meaning that
if you wanted to make sure that spam from 1-800-FLOWERS was filtered
out, you could sign up for their website using the address malan+flowers
@harvard.edu and then match for that address in your spam filter. Also,
this little trick will circumvent the policy of a lot of websites to forbid
multiple accounts for the same e-mail address. Shhh.

5 More TFs! (50:00–52:00)

• Please welcome Peter Lifland and Alex Chang, both of whom were on staff
for CS 50 in the fall!

6 Seriously, More PHP? (52:00–61:00)

• Up till now, we haven’t been outputting valid XHTML when we submit
our form, but only simple text to check that it was working. Let’s see if
we can remedy this by first copying the source of froshims.html to a new
file called register2.php so that we can retain as much of the XHTML
as possible:

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Frosh IMs</title>

</head>
<body>
Name:

10

Computer Science 75
Spring 2009
Scribe Notes

Lecture 2: February 9, 2009
Andrew Sellergren

Captain?:

Gender:

Dorm:

</body>
</html>

As you can see, we’re able to hold onto the DTD as well as some of the
tags. We’ve stripped out all of the body content because we want to
completely redefine the page.

• We can change the Name line to be the following so that it will actually
display the name provided by the user:

Name: <?php print($_POST["name"]); ?> :

• We could do the same for the Captain field, but we don’t really want to
display just “on.” So we’ll add a bit of logic:

Captin?:
<?php

if ($_POST["captain"] == "on")
print("YES");

else
print("NO");

?>

Needless to say, this is a much more aesthetically pleasing way to display
the Captain data.

• Following suit, we can display the Gender data pretty simply:

Gender: <?php print $_POST[’gender’] ?>

Note that for most purposes, single and double quotes are equivalent in
PHP. The only difference is that double quotes are magic. That is, ex-
pressions between them are interpolated such that if you write ‘‘$var’’,
the value of $var will be printed rather than the variable name including
the dollar sign.

• What if we try the same code with the Dorm data? Instead of the actual
data, we’ll get “Array” printed to the browser. This is, of course, because
we specified that dorm be an array. If we want to display the actual dorm
data, we’ll need to iterate over each of the values in the dorm array like
so:

11

Computer Science 75
Spring 2009
Scribe Notes

Lecture 2: February 9, 2009
Andrew Sellergren

Dorm:
<?php

foreach ($_POST["dorm"] as $dorm)
print("$dorm
");

?>

This construct will iterate over each value in the dorm array and assign
each value to a variable called $dorm while doing so.

• Aaaaand, that’s it! Check out the entire source code here. Note that PHP
files actually get executed on the web server and, in general, you won’t
want users to be able to see the source of PHP files. However, for teaching
purposes, we can use the file extension .phps, meaning PHP source, which
will allow you to view the nicely formatted source code (with pretty syntax
highlighting!).

7 Solving More Complex Problems with PHP (61:00–95:00)

• Consider the following problem: you want to password protect not only the
main page but several other pages on your website. One simple solution
to this problem is to include some file at the top of all such pages and in
this file, execute code which redirects a user to the login page if he is not
already logged in.

• Take a look at the incomplete source of login1.php:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Log In</title>

</head>
<body>
<form action="/lectures/src/2/login/login1.php" method="post">
<table>
<tr>
<td>Username:</td>
<td><input name="user" type="text" value="" />
</td>

</tr>
<tr>
<td>Password:</td>
<td><input name="pass" type="password" /></td>

</tr>

12

http://www.cs75.net/lectures/2/src/register2.phps

Computer Science 75
Spring 2009
Scribe Notes

Lecture 2: February 9, 2009
Andrew Sellergren

<tr>
<td></td>
<td><input type="submit" value="Log In" /></td>

</tr>
</table>

</form>
</body>

</html>

A few things to notice: the action attribute specifies login1.php, the
same file we’re submitting from; the method is POST, for security reasons;
the type of the password field is password, which simply prevents prying
eyes from seeing the password as we type it; finally, after we submit, the
URL does not change to https:, so there’s room for security improve-
ments.

• One paradigm that involves more separation of form and function is to
have the login form submit to a different PHP file altogether, but for
simplicity’s sake, we’re examining the case where a form submits to itself.
One advantage to this is that it enables us to retain some information in
the forms if there is some error while submitting.

• But if we’re submitting a form to itself, then we’re going to need some
logic at the top that will actually handle the information. This logic can
be seen in the pre-prepared version of login1.php:

<?
/**
* login1.php
*
* A simple login module.
*
* Computer Science E-75
* David J. Malan
*/

// enable sessions
session_start();

// were this not a demo, these would be in some database
define("USER", "jharvard");
define("PASS", "crimson");

// if username and password were submitted, check them
if (isset($_POST["user"]) && isset($_POST["pass"]))
{

// if username and password are valid, log user in

13

Computer Science 75
Spring 2009
Scribe Notes

Lecture 2: February 9, 2009
Andrew Sellergren

if ($_POST["user"] == USER && $_POST["pass"] == PASS)
{

// remember that user’s logged in
$_SESSION["authenticated"] = TRUE;

// redirect user to home page, using absolute path
// http://us2.php.net/manual/en/function.header.php
$host = $_SERVER["HTTP_HOST"];
$path = rtrim(dirname($_SERVER["PHP_SELF"]), "/\\");
header("Location: http://$host$path/home.php");
exit;

}
}

?>

The define() function allows us to specify constants and their value. By
convention, constants are named with all uppercase letters.

• The first conditional check in the above file is to determine if the user
arrived at this page after submitting a form or for the first time. If they’ve
arrived for the first time, then we want to simply display the XHTML
content. If they’ve submitted the form already, we want to check their
login information. We accomplish this using the function isset(), which
in this case checks whether the username and password have been defined,
as by a form submission.

• Subsequently, we want to check that they’re equal to the hardcoded user-
name and password we specified as constants earlier. If they are equal,
then we want to somehow remember that the user is logged in.

• The fact that HTTP is a stateless protocol poses a problem toward remem-
bering that users are logged in. When your browser has finished fetching
content from the server, it severs the connection. How then do facebook
and online banking systems, for example, remember that a user is logged
in?

• More importantly, how do we uniquely identify a user? IP address is not
enough because users connected through the same router, for example,
will all share an IP address. Instead of using IP address to identify you,
then, the server will plant on your computer, either on the hard drive or
in RAM, a file called a cookie. What does the cookie contain? In short,
anything the server wants. That means, if they wanted to be insecure and
store your username and password, they can. Bad practice!

• A web server typically stores in the cookie not your initial login credentials
but rather one large, random number which then identifies you in the
server’s database. The database stores more securely a whole slew of
information about you. This improves performance, as well, because it

14

Computer Science 75
Spring 2009
Scribe Notes

Lecture 2: February 9, 2009
Andrew Sellergren

minimizes the amount of information that must be transmitted between
client and server each time authentication is required.

• As a developer, we store information about a user via the superglobal
$_SESSION variable. Cookies are used in the following way: when a cookie
is transmitted to the server, it is checked against the database and all
information which has been stored about the user will be retrieved from
the database and inserted back into the $_SESSION variable where it was
originally stored.

• For our purposes, the amount of information we want to store is trivial:
we can remember whether a user is logged in or not using a single boolean.

$_SESSION["authenticated"] = TRUE;

In the homepage, we’ll use this in an if condition:

<? if ($_SESSION["authenticated"]) { ?>
You are logged in!

log out

<? } else { ?>
You are not logged in!

<? } ?>

That’s all there is to the first part of the login validation process.

• The second part of the login validation process is to redirect the user to
the homepage if he is logged in. We do this using these lines of code:

// redirect user to home page, using absolute path
// http://us2.php.net/manual/en/function.header.php
$host = $_SERVER["HTTP_HOST"];
$path = rtrim(dirname($_SERVER["PHP_SELF"]), "/\\");
header("Location: http://$host$path/home.php");
exit;

We might think about doing this the “easy” way by simply redirecting
to home.php. However, the specification for HTTP headers indicates that
the URL should be fully qualified, meaning that it includes the full domain
name and the path. These lines of code are simply using the superglobal
$_SERVER to retrieve the domain name and the path and append them to
the redirect URL.

• Take a look at this line of code from login1.php and see if you can figure
out what it’s doing:

<? if (count($_POST) > 0) echo "INVALID LOGIN"; ?>

15

Computer Science 75
Spring 2009
Scribe Notes

Lecture 2: February 9, 2009
Andrew Sellergren

At this point in the login page, after the initial validation, we’ve reached
the primarily XHTML content. If we’ve gotten to this point in the page
and there is information stored in the $_POST variable (i.e. count will
return greater than 0), then the user must have already submitted the
login form and yet not been redirected because his login was not validated.
Thus, logically, we can assume that the login was invalid.

• If we take a look at login2.php, we see that we’ve made the effort to
retain the username if the user’s login fails. How do we do this? It’s very
simple, in fact:

<td><input name="user" type="text"
value="<? echo $_POST["user"]; ?>" />

</td>

As you can see, we’ve simply printed out the username into the proper
field. Why didn’t we do this with the password field? Well, if we had, it
would’ve been cached. Someone with too much free time on their hands
might be able to poke around on the hard drive and come up with this
password if they were so inclined.

• So far, we’ve overlooked one line of code that’s been in all of the login
files:

//enable sessions
session_start();

Anytime you want to enable sessions—that is, store information such as
login status across multiple pages—you must call this function in PHP.
Otherwise, PHP will not create cookies to uniquely identify users.

• In login3.php, we’re setting a cookie explicitly like so:

// save username in cookie for a week
setcookie("user", $_POST["user"],

time() + 7 * 24 * 60 * 60);

Here, we’re telling PHP to store the username in the cookie for a week’s
time. Later, we use this to pre-populate the username field:

<td>Username:</td>
<td><input name="user" type="text"

value="<? echo ($_POST["user"])
? $_POST["user"] : $_COOKIE["user"]; ?>" />

</td>

16

Computer Science 75
Spring 2009
Scribe Notes

Lecture 2: February 9, 2009
Andrew Sellergren

These lines make use of a ternary operator. That is, it has three operands.
The first is the condition, in parentheses, which checks whether the user
variable is set. If it is, then it will be echoed to the screen. If not, then
the username stored in the $_COOKIE superglobal will be outputted.

• What’s the difference between session cookies and cookies created by call-
ing setcookie()? Session cookies, by default, only exist in RAM and thus
are destroyed when the user navigates away from the page or perhaps not
until he closes his browser. When setcookie() is called with some posi-
tive value specified as the second argument, the cookie will persist on the
user’s hard drive until that length of time has run out.

• Question: what does the call to exit() do at the end of the redirect code?
Although most browsers pay attention to the specification for HTTP head-
ers and will redirect the user to a different page, if we don’t have this
exit() call, many of them will still output the remaining XHTML con-
tent on our login1.php page. Frankly, we don’t want this because they
shouldn’t see this content if we mean for them to be redirected, but we
also don’t want this because it’s a waste of bandwidth.

• Question: who specifies the names of cookies? The developer has this
power. They are stored on a per-domain basis, though, so that there
won’t be name collisions across multiple domains.

• Question: what if the browser doesn’t support cookies? Some browsers
will compensate for this by appending the very large random number to
the end of the URL. The Extension School’s website does this to a certain
extent. If you poke around long enough, you might notice that the string
?jsessid will appear in the URL followed by a very long string of digits.

• In login4.php, we do a bad thing by storing the user’s password as well
as username. Your second unofficial homework assignment for next class
is to navigate to login4.php and login as user jharvard with password
crimson. Once you’ve done this, poke around on your hard drive and see
if you can find where the cookie has been stored and, within that cookie,
where the username and password are stored.

• One other difference between login4.php and login3.php is that we’re
now authenticating using the $_COOKIE superglobal rather than the $_POST
superglobal. This is not recommended!

• What is the big danger of cookies? If someone is sniffing packets and
grabs one which is transmitting your cookie to the server without SSL
encryption, then certainly this malicious user can hijack your session.

• PHP version 5 supports object-oriented programming (OOP). Recall that
our own course.php file uses classes, a key feature of OOP.

• A good example of the user of sessions is to implement the shopping cart
functionality of e-commerce websites.

17

http://www.cs75.net/lectures/2/src/login/login4.php

Computer Science 75
Spring 2009
Scribe Notes

Lecture 2: February 9, 2009
Andrew Sellergren

8 Transition to SSL (95:00–100:00)

• Last week, we used the .htaccess file to accomplish the rebranding of
our website by adding a www in front of it. This week, we’ve added a few
more lines to it:

RewriteEngine On

RewriteCond %{HTTP_HOST} !^www\.cs75\.net [NC]
RewriteRule (.*) http://www.cs75.net/$1 [R=301,L]

RewriteCond %{REQUEST_URI} ^/login/
RewriteCond %{HTTPS} != on
RewriteRule (.*) https://www.cs75.net/$1 [R=301,L]

The three lines at the bottom tell the server to bounce the user back to
SSL anytime he tries to access files in the login directory. SSL websites
run not on port 80 but on port 443. This means that in your httpd.conf
file, there needs to be some mention of listening on this port. The web
server also needs to know what key file to use. This is not something we’ll
be asking you to set up because not only would we need 156 unique IP
addresses, you would also need to fork over a whole lot more money. Even
if you buy an SSL certificate from someone like GoDaddy or VeriSign,
there’s a chance that it won’t be recognized by certain browsers (if the
vendor hasn’t made the right partnerships).

• What’s with this key file? Once you’ve purchased an SSL certificate, you’ll
have to upload a very small text file to your web server which contains a
very large number. After you’ve told the web server where to find this file,
every HTTP request which uses SSL will begin by matching this key file
against a key file on the client and generating from the two a shared very
large, secret number with which all subsequent traffic will be encrypted,
including the headers. This is why you need a unique IP address for SSL
with virtual hosting because otherwise the server can’t know where to
direct the traffic if it can’t decrypt the domain name.

• Setting up SSL is thus a matter of adding a few lines of code to the
httpd.conf file:

SSLCertificateFile /path/to/certficate
SSLCertificateKeyFile /path/to/key
SSLCertificateChainFile /path/to/chain

18

	Announcements (0:00--3:00)
	More with PHP (3:00--37:00)
	Something Completely Different (37:00--39:00)
	Even More PHP (39:00--50:00)
	More TFs! (50:00--52:00)
	Seriously, More PHP? (52:00--61:00)
	Solving More Complex Problems with PHP (61:00--95:00)
	Transition to SSL (95:00--100:00)

