
Computer Science 75
Spring 2009
Scribe Notes

Lecture 11: April 27, 2009
Andrew Sellergren

Contents

1 Introduction (0:00–2:00) 2

2 Rudimentary Security (2:00–13:00) 2

3 suPHP (13:00–18:00) 3

4 Session Hijacking (18:00–40:00) 4

5 Cryptography (40:00–55:00) 6

6 SQL Injection Attacks (55:00–63:00) 7

7 Same Origin Policy (63:00–75:00) 8

1

Computer Science 75
Spring 2009
Scribe Notes

Lecture 11: April 27, 2009
Andrew Sellergren

1 Introduction (0:00–2:00)

• 1 handout this week.

• Bug of the week, brought to you by yours truly! Zipcar sent me an e-mail
with the first line “Hi, #first name#.” Oops.

• Today’s lecture will focus on the gotchas of web development, specifically
the ones that allow malicious users to break or manipulate your applica-
tion.

2 Rudimentary Security (2:00–13:00)

• Let’s begin by taking a look at some obvious threats:

– Telnet

– FTP

– HTTP

– MySQL

• You can think of Telnet as a less-secure form of SSH. It is still used fairly
widely these days, including by Cisco and TiVo, and is generally safe
when used to connect two computers on the same subnet. Being that its
transmissions are unencrypted, however, what risk does it pose? Well,
usernames and passwords are transmitted in the clear. Pretty easy for a
malicious user to sniff your network traffic and steal your information.

• In fact, only recently did Harvard’s FAS servers stop supporting Telnet.
Most of Harvard’s ethernet jacks are shared via hubs which, upon receiving
information, spit it out to all connected computers in the hopes that one
of them is the correct destination. That means any of the other computers
can access information that wasn’t intended for them!

• Next on the list is FTP. As you may have guessed, this is a less-secure
version of SFTP. Moving forward, if you’re using any kind of third-party
hosting service like GoDaddy, you should look to use SFTP rather than
FTP for transferring files.

• As for HTTP, you might ask why we weren’t using the more-secure alter-
native HTTPS even for C$75 Finance. Well, the simple answer is that in
order to support HTTPS, or more properly SSL, your server must have
a unique IP address for your domain. Since we only get 4 unique IP
addresses, not 160, with our hosting deal, this wasn’t a realistic option.

• What about MySQL? If we’re passing in the hostname localhost, is there
any security risk? Well, not as much as if we were accessing a remote host,
but there’s still a potential gotcha. If your PHP file containing the user-
name and password for your database were world-readable (chmod 644),

2

Computer Science 75
Spring 2009
Scribe Notes

Lecture 11: April 27, 2009
Andrew Sellergren

then anyone with an account on that server can open them up and yank
your database login credentials.

• If you tried connecting from your own machine to our server using the host-
name cs75.net as your MySQL connection parameter, you found that it
failed. This is because we have a firewall running on the server that blocks
all connections on port 3306, the default MySQL port. This prevents the
transmission of your credentials in the clear, which the mysql_connect()
function does by default. There are ways to encrypt this data before send-
ing it over the wire, but we chose to take the stricter precaution of only
allowing database connections from the local server.

3 suPHP (13:00–18:00)

• If you recall from a previous lecture, the course server is running a tool
called suPHP which forces any PHP script to run on Apache as the owner
of the PHP file. In other words, if the PHP file is owned by malan, then it
will execute on the server as user malan, rather than the default apache
or, even worse, root.

• What does this accomplish? If, for example, the PHP script in ques-
tion tried to execute the shell command rm -rf /etc/passwd/, the script
would fail because user malan doesn’t have permissions to run this shell
command.

• What’s the downside of every user’s scripts running as user apache? Well,
that means that everyone on the server has the same access. Anyone who
has access to the server can possibly take a peek at your files. For example,
even if your directories aren’t world-readable, the files within them might
be. If a malicious user guesses that you have a file called index.php, then
he might be able to take a peek at it while running a PHP script as user
apache.

• In the same vein, files that are uploaded to the server via SFTP might
have their owner set as apache by default, in which case, others might
have access to them.

• What’s one way to take care of all these headaches? Well, if your server
isn’t shared, then you don’t have to worry about other users having access
via this ownership loophole. Simple as that.

• The formatter key is where we can tell YUI to use a function of our own
definition, namely googleURL and countryURL, which make the contents
of the column’s cells into links to Google and Wikipedia, respectively.

• Below the columns definition, we have several other important snippets of
code we should examine. First, we’re instantiating a new YUI DataSource
and telling it that the response we’ll be getting will be of type JSON.

3

Computer Science 75
Spring 2009
Scribe Notes

Lecture 11: April 27, 2009
Andrew Sellergren

Then, we’re also telling YUI to queue our Ajax requests if several are
made close together. Below that, we have to define the response schema
of our DataSource. This may sound a little cryptic, but know that it’s an
extension of our earlier definition of the columns array. And trust that
it’s all in the YUI documentation somwhere! Finally, we tell YUI that the
DataTable will live in the div that has id="results". That’s it!

• Installing suPHP is as easy as adding a few lines of code to the http.conf
file which essentially tell Apache to pass all PHP files through suPHP
before executing.

4 Session Hijacking (18:00–40:00)

• Take a look at these two lines from an HTTP response header:

Set-Cookie: PHPSESSID=5899f546557421d38d74b659e5bf384f; path=/
Set-Cookie: secret=12345

The second line seems to be a rookie mistake. The server is storing the
user’s password in a cookie, which is insecure on multiple levels. First, this
information will be transmitted in the clear, so anyone sniffing network
traffic can steal the password. Second, the cookie will be stored on the
user’s computer, so the password will be readily accessible to anyone who
gets control of the user’s machine.

• What about the first line? Well, for starters, anyone with access to the
server might be able to poke around the tmp directory to find the cookies.
By default, these files will be stored with the owner being the appropriate
user. As we saw once before, however, the name of the file is actually
the session ID number. With these session ID numbers, a malicious user
could hijack a session. Oops.

• Even worse, a malicious user with a packet sniffer could hijack a session
simply by grabbing the session ID number as it’s transmitted over the
wire. That includes anyone sitting next to you in a Starbucks.

• If the session ID numbers are being generated in a predictable fashion, then
a malicious user could also spoof a session simply by guessing a legitimate
session ID number.

• With SSL, we can encrypt all of the information in the HTTP headers.
This way, the person sitting next to you in Starbucks doesn’t have direct
access to your session ID number. The problem is that this isn’t supported
by all servers. Because the HOST parameter of the HTTP header will also
be encrypted, the server must have a unique IP address. Otherwise, how
would it know where to send the HTTP request if it can’t decrypt the
HOST parameter?

4

Computer Science 75
Spring 2009
Scribe Notes

Lecture 11: April 27, 2009
Andrew Sellergren

• There are a few workarounds to this problem. SSL depends on public and
private key pairs. If we have a unique one for each domain that’s hosted
on a server, we could simply try decrypting the HTTP header with all
possible key pairs. This gets a little hairy when you have a lot of key
pairs, however. A second option would be to have a shared key pair for
all domains hosted on the server.

• In summary, here are a few technical terms for the attacks we’ve already
mentioned:

– Physical Access

– Packet Sniffing

– Session Fixation

– XSS

Physical access to the server, of course, translates to the ability to poke
around and yank sensitive information on the server. Packet sniffing, as
we’ve already mentioned, is the threat posed by the person sitting next
to you in Starbucks who may be grabbing your session ID number from
unencrypted HTTP traffic. Session fixation is a fancy term for the guessing
of a valid session ID number. XSS stands for cross-site scripting, which
we’ll discuss a little later.

• What defenses are there against session hijacking?

– Hard-to-guess session keys?

– Rekey session?

– Check IP address?

– Encryption?

Very long session keys ensure that they’re both hard to guess and that
there won’t be many collisions between users on the site. Rekeying sessions
should be done with some frequency, although it presents a problem if a
user opens multiple browser windows, for instance. Checking a user’s IP
address is a possibility, but since IP addresses are often shared and subject
to change, this isn’t perfectly reliable.

• In theory, the idea of SSL certificates is good, but generally speaking,
it fails in practice. For example, certificates can be revoked, but they
rarely are and even if they are, browsers don’t usually check for it. Not
to mention that SSL has been cracked!

• SSL certificates range in sophistication and price, although they’re all
basically the same magic act. You can pay extra to have the VeriSign logo
appear on your website or even have a logo appear in the address bar, but
really, it’s not that much more secure.

5

http://digg.com/security/SSL_certificates_cracked_and_cloned

Computer Science 75
Spring 2009
Scribe Notes

Lecture 11: April 27, 2009
Andrew Sellergren

• Know that it’s possible to generate your own SSL certificate for free, but
that most browsers will throw an error when a user tries to access your
site, saying something to the effect of “We cannot verify the identity of
this site.” This is because you didn’t go through the normal channels
of having a recognized third party, such as GoDaddy, vouch for your SSL
certificate. Most users will probably click through to your website anyway,
but it’s slightly annoying.

5 Cryptography (40:00–55:00)

• How do we communicate sensitive information between two parties who
have never met and therefore can’t have agreed upon an encryption scheme
ahead of time? In other words, if I want to send my credit card information
to Amazon and encrypt it using a password of my choice, how do I securely
communicate this password to Amazon? Again, we have a chicken and
the egg problem.

• Enter public key and private key pairs. The public key and private key
are two very large numbers that have a special mathematical relationship
we won’t discuss here. Suffice it to say that having only the public key
is useless. An adversary could steal this number, but can only use it to
encrypt data. In order to decrypt the data, he would need the private key.

• Now, when I transmit information to Amazon, I encrypt it using Amazon’s
public key. Amazon, with its private key, is the only other entity (at least
in theory) that can decrypt this information. Likewise, when Amazon
sends me data, it encrypts it using my public key, which enables me to
decrypt it using my private key. Whew.

• Generally speaking, RSA encryption is computationally intensive which
means it’s expensive. Web giants like Facebook and Amazon tend to
avoid it on as many pages as possible because more CPU cycles means
more money.

6

Computer Science 75
Spring 2009
Scribe Notes

Lecture 11: April 27, 2009
Andrew Sellergren

• What can we do instead? Well, there are many symmetric-key encryption
algorithms, including DES and AES, which are much faster. They rely on
a single secret key to both encrypt and decrypt data. Now we face the
problem of how to transmit that secret key securely between two entities.
Well, we can use RSA encryption to transmit this secret key and for all
subsequent transactions, use a much faster algorithm like DES or AES to
encrypt data. This is precisely what SSL does.

• An SSL certificate, more properly speaking, is simply a signed public key.
That is, a public key generated for the website has been verified by a
third party such as GoDaddy. When a user downloads this public key, his
browser will be able to verify that it was signed by a trustworthy entity.

• What’s interesting is that the public key and private key pair have a second
use in this verification process. Not only can the public key be used to
encrypt data which is then decrypted using the private key, the private
key can be used to sign a website’s public key and the signer’s public key
can be used to verify the signer’s identity.

• Let’s take a look at the finer details of public key cryptography using
an algorithm called Diffie-Hellman (DLP) which is much less complicated
than RSA:

In this example, TA is effectively Alice’s public key and TB is effectively
Bob’s public key. g and p are two prime numbers known to both Alice and
Bob, g standing for generator and usually being 2. Although the number
A is known only to Alice and the number B is known only to Bob (think
of A and B as Alice and Bob’s private keys, respectively), the number
gAB mod p, without ever having been sent across the wire, is known to
both and thus can be used to encrypt information.

6 SQL Injection Attacks (55:00–63:00)

• Remember the function mysql_real_escape_string? Besides being an
example of annoying style, it’s very useful toward protecting against SQL

7

Computer Science 75
Spring 2009
Scribe Notes

Lecture 11: April 27, 2009
Andrew Sellergren

injection attacks.

• Suppose a malicious user wants to hack into your server and your database.
If we pass his input directly to our mysql_query function using the $_POST
array, we’ve left ourselves vulnerable.

• Let’s say our SQL query for looking up a user in our database looks like
the following:

$result = mysql_query(sprintf("SELECT uid FROM users
WHERE username=’%s’ AND password=’%s’ ",
$_POST["username"], $_POST["password"]));

As you can see, we’re passing the user’s input directly into the query and
executing it immediately.

• What if instead of a password, our user types in a SQL-like string such as
12345’ OR ‘1’ = ‘1 at the login page? Since 1 always equals 1, the user
will always be assigned a uid even if he doesn’t have a valid login. Oops!

• The simple fix is to escape any user input that you pass to a database.
This will add a backslash before any single quotes which will prevent a
malicious user from closing the single quotes in our SQL query. You can
do this by passing the user input to mysql_real_escape_string before
inserting it into the query to be executed.

7 Same Origin Policy (63:00–75:00)

• Let’s return to Project 3 for a moment. Why were we unable to use our
JavaScript code to query Google News directly? The same origin policy
prevents JavaScript on one server from executing on another.

• Without the same origin policy, a malicious user would be able to launch
a denial of service attack on one website using another. For example, a
script on Facebook would be able to query Google News. In this way, the
hundreds of thousands of requests to Google News would be coming not
from a single server but from hundreds of thousands of different users.

• The SOP is a way of separating DOMs. This is true even of iframes such
that the JavaScript for the outer container site can’t access or traverse the
DOM of the inner frame if that DOM comes from a different domain.

• Browser plugins like Firebug and Greasemonkey are something of an ex-
ception because they’re really manipulating a local copy of the content
rather than the content on the server.

• The SOP applies to the following:

– Windows

8

Computer Science 75
Spring 2009
Scribe Notes

Lecture 11: April 27, 2009
Andrew Sellergren

– Frames

– Embedded Objects

– Cookies

– XmlHttpRequest

The related attacks are cross-site request forgery (CSRF/XSRF) and cross-
site scripting (XSS). Cross-site request forgery is simply the spoofing of
a URL which uses the GET method, for example, to cause a user to un-
wittingly take an action—for example, buying a stock he didn’t intend
to—simply by clicking a disguised link.

• How to defend against CSRF/XSRF? Well, you could simply disable the
GET method. Browsers nowadays also warn you when form data is going
to be resubmitted. Amazon also defends against this by requiring you to
login a second time before completing checkout.

• What about the HTTP Referer header? Well, not only can it be spoofed,
but it sometimes is removed entirely by antivirus software and the like.

• Basically, to defend against CSRF/XSRF, you just want to add a small
speedbump so that the process isn’t entirely automated. Challenging the
user with a CAPTCHA is a good example.

• One interesting security defense called SafePass has been implemented by
Bank of America. When you go to login, it will text you a small passcode
that you use to login. This is definitely a step up from the SiteKey, which
is highly susceptible to a man-in-the-middle attack.

• XSS attacks are more real than you might imagine. In your previous
projects, you’ve surely implemented some kind of error message system
whereby a user’s bad input was spit out to the browser window so he
could see where he went wrong. What if that bad input was a script tag
linking to a malicious script? Now, if you haven’t sanitized this input,
you’ll be embedding into your DOM a malicious script. This script might,
for example, send the value of document.cookie to the malicious user’s
server.

• One defense against this would be to disable access to the cookies via
JavaScript. Of course, the better defense is to simply escape all user input
before spitting it out to the browser window by calling htmlentities()
for example.

• You can’t go wrong escaping user input!

9

	Introduction (0:00--2:00)
	Rudimentary Security (2:00--13:00)
	suPHP (13:00--18:00)
	Session Hijacking (18:00--40:00)
	Cryptography (40:00--55:00)
	SQL Injection Attacks (55:00--63:00)
	Same Origin Policy (63:00--75:00)

