Computer Science 75 Lecture 10: April 20, 2009
Spring 2009 Andrew Sellergren
Scribe Notes

Contents
1 Welcome (0:00—2:00) 2
2 jQuery (2:00-50:00) 2

3 YUI and More (50:00—85:00) 7

Computer Science 75 Lecture 10: April 20, 2009
Spring 2009 Andrew Sellergren
Scribe Notes

1 Welcome (0:00-2:00)

e A quick welcome to Dan Armendariz!

e Dan co-lectures the summer version of E-75 and also teaches Computer
Science E-7: Exposing Digital Photography.

2 jQuery (2:00-50:00)

e You're familiar by now with Google’s use of Ajax to improve Google Maps.
Gmail and Google Calendar also rely heavily on Ajax for their core func-
tionality. Outside of Google, Apple makes great use of Ajax, particularly
in their MobileMe service.

e The much-exalted list of JavaScript libraries (which is by no means com-
prehensive):

— Dojo

— Ext JS

— jQuery
MooTools
Prototype

script.aculo.us
— YUI

e With any of these libraries, typical use involves downloading a large JavaScript
file which you link to in your head tag.

o If you take a look at the course website for Computer Science E-7, you’ll see
that you can click on the main image and dynamically change the theme
of the whole homepage. How might we accomplish this using JavaScript?

e Take a look at the Color Test page. Enter in four colors in hexadeci-
mal format and watch the CSS properties of the website change before
your very eyes. Are we using Ajax for this? Not exactly. Just plain old
JavaScript:

if ('testColor(page)) {
alert("The page color is not a valid hexadecimal color.");
return false;

}

Within the function changeTheme, the above snippet of code is repeated
several times. As you might’ve guessed, we're just testing to see if the
color provided by the user is a valid hexadecimal number. Next, the real
substance:

http://dojotoolkit.org/
http://extjs.com/
http://jquery.com/
http://mootools.net/
http://www.prototypejs.org/
http://script.aculo.us/
http://developer.yahoo.com/yui/
http://cse7.org/
http://cse7.org/colortest

Computer Science 75 Lecture 10: April 20, 2009
Spring 2009 Andrew Sellergren
Scribe Notes

var headID = document.getElementsByTagName ("head") [0];

var newNode = document.createElement("link");

newNode.type = "text/css";

newNode.rel = "stylesheet";

newNode.href = "/styles/colors.php?p=" + page + "&c=" + content +
"&h=" + highlight + "&t=" + text;

newNode.media = "screen";

headID.appendChild(newNode) ;

Here, we'’re finding the head element of the page and creating a new 1link
tag to place within it. This 1ink tag will contain a new stylesheet, gen-
erated dynamically by our colors.php file. Because stylesheets are cas-
cading, this stylesheet will override the others above it when we place it
below the other link tags. If you have Firebug, you can see it will be
highlighted once it’s been added to the DOM.

e In jqueryl.html, you can see that we have three buttons, two of which
purportedly enable and disable all of the buttons. This is actually quite
easy to accomplish using jQuery:

function disableAllButtons() {

// add the attribute "disabled" with value "disabled"
// to all submit buttons
$(":submit") .attr("disabled","disabled");

}

Although it might look quite cryptic at first, the syntax for jQuery is quite
simple. Here, we're simply searching for all elements in the DOM of type
submit. Then we’re adding the disabled attribute to them and setting
its value to disabled.

e Note that nearly all of jQuery’s functionality, minus a few plugins here
and there, is packaged into a single JavaScript file. This is in contrast
to the YUTI library, for example, which has been splintered into multiple
files along the way. As with anything, both have their advantages and
disadvantages.

e The dollar sign notation is common to multiple different JavaScript li-
braries. Here, it references the jQuery object. Note that if you use multi-
ple libraries on a single page, all of which use this dollar sign notation, at
least one of the libraries will have to default to alternate notation.

e Of course, we’ll need to take steps forward, now, because when we click
Disable All, we have no way of re-enabling the buttons, since the Enable
All button is disabled along with the others.

Computer Science 75 Lecture 10: April 20, 2009
Spring 2009 Andrew Sellergren
Scribe Notes

e In jquery2.html, we disable all the buttons except the Enable All button
like so:

function disableAllButtons() {

// add the attribute "disabled" with value" disabled"
// to all submit buttons
$(":submit") .attr("disabled","disabled");

// that might have been premature, let’s re-enable
// the "enable all" button.
$(":submit:eq(1)") .attr("disabled", "");

Of course, this is a somewhat naive approach since it would make more
sense to avoid disabling the Enable All button in the first place instead of
disabling it and then re-enabling it.

e The enableAllButtons () function exhibits another way of searching through
the DOM:

function enableAllButtons() {

// from the example above, we could have done:
// $(":submit").attr("disabled", "");

// But we can use css-style selectors to

// find the ones we want also:

$("input [type=’submit’]") .attr("disabled", "");
}

As you can see, this type of query is more XPath-like than the first.

e Note that JavaScript doesn’t really have classes or constructors, per se,
but we can mimic that behavior quite well.

e In jquery3.html, we've pared down the code a little bit using this XPath-
like search. Now, we’re disabling all but the Enable All button from the
start:
function disableAllButtons() {

// unlike xpath, there is no ’@’ character before attributes

$("input [name!=’submit1’]") .attr("disabled", "disabled");

Computer Science 75 Lecture 10: April 20, 2009
Spring 2009 Andrew Sellergren
Scribe Notes

function enableAllButtons() {

$(":submit") .attr("disabled", "");

e We can take a quick look back at the alternative to using JavaScript
libraries, which is to handle the XMLHttpRequest object ourselves. This
quickly becomes cumbersome, as you've already seen:

// an XMLHttpRequest
var xhr = null;

function doAjax(id) {

// instantiate XMLHttpRequest object

try
{
xhr = new XMLHttpRequest();
}
catch (e)
{
xhr = new ActiveXObject("Microsoft.XMLHTTP");
¥

// handle old browsers

if (xhr == null)

{
alert("Ajax not supported by your browser!");
return;

}

// construct URL
var url = "json.php?7id=" + id;

// get quote
xhr.onreadystatechange =
function()
{

// only handle loaded requests

if (xhr.readyState == 4)

{

if (xhr.status == 200)

Computer Science 75 Lecture 10: April 20, 2009
Spring 2009 Andrew Sellergren
Scribe Notes

{

// evaluate JSON

var data = eval("(" + xhr.responseText + ")");

// show JSON in textarea

document .getElementById("bar") .innerHTML = data.servertime;
}
else

alert ("Error with Ajax call!");
}
}
xhr.open("GET", url, true);
xhr.send (null);

3

Most of this syntax will be familiar to you from previous lectures, but just
for practice, try working through it again and making sure you understand
it in this context in which we’re asking for the server time.

e What’s the equivalent if we use jQuery? A whopping 4 lines of code:
function doAjax(id) {

$.getJSON("json.php?id=" + id,
function(data) {
$(#bar’) .html(data.servertime);
b;

e Note that the id argument passed to doAjax() is all but meaningless.
It’s merely meant to show you that you can pass arguments as necessary
and concatenate them to your Ajax requests using jQuery. Here, we're
querying the same PHP file as before, which, just for reference, has the
following lines of code:

<7
$myArray = array(

’servertime’ => date("1l \\t\h\e jS @ h:i:s A"),
’random’ => rand(0,100)

Computer Science 75 Lecture 10: April 20, 2009
Spring 2009 Andrew Sellergren
Scribe Notes

echo json_encode($myArray) ;
7>

Going back to the doAjax () function, we can see that we’re again search-
ing through the DOM for a particular element, this time one with the id
of bar. The data that’s returned from our Ajax request is being passed to
an anonymous function (the second argument of the getJSON() method)
as the variable data. Within that function, we access the servertime
property of the data object.

e One last example, jquery5.html, demonstrates how we can modify mul-
tiple DOM elements concurrently:

function doAjax(id) {

$.getJSON("json.php?id=" + id,
function(data) {
$(’.foo0’) .each(
function(i) {
$(this) .html(data.servertime);
1)
b

3 YUI and More (50:00-85:00)

e Now that we have the foundation for Ajax, what can we do with it?
One well-known example is autocomplete functionality. Check out YUTI’s
example here. If you take a look at the snippets of code posted below the
example, you’ll see that what it boils down to is sending a GET string to a
PHP file. This GET string is updated as the user types in the search box.
The hard part, really, is writing the back-end PHP search which will look
up results in a database.

e Realize, of course, that in the YUI example, the URL they were requesting
was on their own servers. This goes back to the same origin policy we
discussed before. If you implement the YUI AutoComplete widget on your
own site, you’ll be responsible for writing the PHP file that is requested.
Yahoo! probably doesn’t have much in the way of examples for how to
perform the back-end search.

e Let’s take a look at an example which uses YUI DataTable. First, the
back-end:

http://developer.yahoo.com/yui/examples/autocomplete/ac_basic_xhr.html

Computer Science 75 Lecture 10: April 20, 2009
Spring 2009 Andrew Sellergren
Scribe Notes

<7
/%
*
* marathon.php
*
* Returns details from the 2009 Boston Marathon results
* in JSON format.
*
* Dan Armendariz
* Computer Science E-75
* Harvard Extension School
*

*
~

// set the content type
header ("Content-type: application/json");

// define the data’s structure
$desc =
array(’race’,’pos’,’name’,’country’,’time’);

// 20 Apr 2009 results from http://www.baa.org/

$results = array(places => array(
array(’Women Open’,’1’,’Salina Kosgei’,’Kenya’,’2:32:16’),
array(’Women Open’,’2’,’Dire Tune’,’Ethiopia’,’2:32:17’),
array(’Women Open’,’3’,’Kara Goucher’,’USA’,’2:32:25°),
array(’Women Open’,’4’,’Bezunesh Bekele’,’Ethiopia’,’2:33:08’),
array(’Women Open’,’5’,’Helena Kirop’,’Kenya’,’2:33:24’),
array(’Women Open’,’6’,’Lidiya Grigoryeva’,’Russia’,’2:34:207),
array(’Women Open’,’7’,’Atsede Habtamu’,’Ethiopia’,’2:35:34°),
array(’Women Open’,’8’,’Colleen S. De Reuck’,’USA’,’2:35:37°),
array(’Women Open’,’9’,’Alice Timbilili’,’Kenya’,’2:36:257%),
array(’Women Open’,’10’,’Alina Ivanova’,’Russia’,’2:36:50’),
array(’Men Open’,’1’,’Deriba Merga’,’Ethiopia’,’2:08:42’),
array(’Men Open’,’2’,’Daniel Rono’,’Kenya’,’2:09:327),
array(’Men Open’,’3’,’Ryan Hall’,’USA’,’2:09:40’),
array(’Men Open’,’4’,’Tekeste Kebede’,’Ethiopia’,’2:09:49°),
array(’Men Open’,’5’,’Robert Cheruiyot’,’Kenya’,’2:10:06°),
array(’Men Open’,’6’,’Gashaw Asfaw’,’Ethiopia’,’2:10:44’),
array(’Men Open’,’7’,’Solomon Molla’,’Ethiopia’,’2:12:02°),
array(’Men Open’,’8’,’Evans Cheruiyot’,’Kenya’,’2:12:45’),
array(’Men Open’,’9’,’Stephen Kiogora’,’Kenya’,’2:13:00’),
array(’Men Open’,’10’°,’Timothy Cherigat’,’Kenya’,’2:13:04°),
array(’Women Wheelchair’,’1’,’Wakako Tsuchida’,’Japan’,’1:54:377),
array(’Women Wheelchair’,’2’,’Diane Roy’,’Canada’,’2:01:27’),
array(’Women Wheelchair’,’3’,’Shirley S. Reilly’,’USA’,’2:04:54°),

Computer Science 75 Lecture 10: April 20, 2009
Spring 2009 Andrew Sellergren
Scribe Notes

array(’Men Wheelchair’,’1’,’Ernst Van Dyk’,’South Africa’,’1:33:297),

array(’Men Wheelchair’,’2’,’Masazumi Soejima’,’Japan’,’1:36:57°),

array(’Men Wheelchair’,’3’,’Roger Puigbo Verdaguer, Sr.’,’Spain’,’1:37:47’)
D)

foreach ($results[’places’] as &$result) {
$result = array_combine($desc,$result);

}

print(json_encode ($results));
7>

Notice we’ve taken the brute-force method of just hardcoding in the re-
sults of this year’s Boston Marathon. More sophisticated implementations
would obviously rely on well-structured data. The array_combine () func-
tion is called so that race, pos, name, country, and time become the keys
for each of the rows of our table.

e Now check out the front end here. Notice that the YUI DataTable makes
certain things very easy, including sorting and pagination. Click on any
of the columns to sort by it and click on any of the names of the runners
to open a Google search for him or her.

e How do we implement this? First, by linking to several YUI libraries,
both JavaScript and CSS. Second, with the following lines of JavaScript:

// on load
YAHOO.util.Event.addListener (window, "load", function() {

populateTable = new function() {

// modify country cells to provide a link to the Wikipedia page.
var countryUrl = function(cell, record, column, data) {
cell.innerHTML = "<a href=’http://en.wikipedia.org/wiki/"
+ data + "’ target=’_blank’>" + data + "";

};

// modify name cells to provide a link to Google search results.

var googleUrl = function(cell, record, column, data) {
cell.innerHTML = "<a href=’http://www.google.com/search?q="
+ data + "’ target=’_blank’>" + data + "";

};

// define the columns in the table

http://www.cs75.net/lectures/10/src/yui/yui.html

Computer Science 75 Lecture 10: April 20, 2009

Spring 2009
Scribe Notes

};
B

Andrew Sellergren

var columns = [
{key:"race", label:"Race", sortable:true},
y
{key:"pos", label:"Position", sortable:true,
y:'p
formatter:"number"},
{key: "name", label:"Name", sortable:true,

formatter:googleUrl},
{key:"country",label:"Country", sortable:true,

formatter:countryUrl},
{key:"time", label:"Time", sortable:true}

1;

// create a new data source object whose data comes from marathon.php
// and is returned from the server with type JSON

var dataSource = new YAHOO.util.DataSource("marathon.php?");
dataSource.responseType = YAHOO.util.DataSource.TYPE_JSON;

// if a request is already in progress, wait until it’s done before
// performing another request.
dataSource.connXhrMode = "queueRequests";

// define the schema of the data as returned from the server
dataSource.responseSchema = {

resultsList : "places",

fields: ["race","pos",'"name","country","time"]

};

// define the table as living within a div with id results with

// columns and a datasource we have just defined

dataTable = new YAHOO.widget.DataTable("results", columns,
dataSource) ;

// finally, perform the Ajax request to populate the table with data
dataSource.sendRequest () ;

The first important chunk we’ll focus on is the definition of the variable
columns. Notice that each of the columns in our DataTable corresponds
to an index into the array in our PHP file. Here’s where we tell the YUI
library about that association. The columns variable is actually an array
of JavaScript objects with predefined keys, namely key, label, sortable,
and formatter. Pretty self-explanatory.

e The formatter key is where we can tell YUI to use a function of our own

10

Computer Science 75 Lecture 10: April 20, 2009
Spring 2009 Andrew Sellergren
Scribe Notes

definition, namely googleURL and countryURL, which make the contents
of the column’s cells into links to Google and Wikipedia, respectively.

e Below the columns definition, we have several other important snippets of
code we should examine. First, we're instantiating a new YUI DataSource
and telling it that the response we’ll be getting will be of type JSON.
Then, we're also telling YUI to queue our Ajax requests if several are
made close together. Below that, we have to define the response schema
of our DataSource. This may sound a little cryptic, but know that it’s an
extension of our earlier definition of the columns array. And trust that
it’s all in the YUI documentation somwhere! Finally, we tell YUI that the
DataTable will live in the div that has id="results". That’s it!

e Recall that the data in our PHP file was confined within an inner array
named places. This corresponds to the resultsList property of our
response schema.

e Wanna see something else cool? I know you do. Here’s jQuery Cycle. It
has some pretty cool transition effects for displaying photos. Using jQuery
Cycle along with zenphoto, we can create some pretty cool projects. Take
a look at this slideshow for E-7. But, shh, don’t tell the students about
it, it’s a surprise!

e One technique that this slideshow makes use of is called lazy loading. This
is a method whereby content is only loaded as needed in order to reduce
download times. Not all of the photos in this slideshow are loaded right
away, but only right before they are to be displayed.

e jQuery Cycle uses a larger div that contains multiple div elements within
it. The bottom div elements remain hidden until the transition is ready
to be made. Then the topmost div disappears and the one below it takes
its place. Pretty neat, huh?

e The innerworkings of this slideshow can be summarized as follows: each
time we change slides, we fire an event that calls fetchSlide to get the
next. Once this next slide is fetched, its properties aren’t yet defined the
way we want them. So we search for the slides that don’t have these
properties defined and then we define them. A little vague, I know, but
take a look at the source yourself and see if you can figure out what’s
going on!

11

http://malsup.com/jquery/cycle/
http://cse7.org/slideshow/

	Welcome (0:00--2:00)
	jQuery (2:00--50:00)
	YUI and More (50:00--85:00)

