
Computer Science 75
Spring 2009
Scribe Notes

Lecture 1: February 2, 2009
Andrew Sellergren

Contents

1 Announcements (0:00–2:00) 2

2 Project 0 (2:00–10:00) 2

3 Apache and Web Server Configuration (10:00–50:00) 3

4 PHP (50:00–97:00) 7

1

Computer Science 75
Spring 2009
Scribe Notes

Lecture 1: February 2, 2009
Andrew Sellergren

1 Announcements (0:00–2:00)

• O hai! Welcome back to Computer Science E-75: Building Dynamic,
Scalable Websites!

• 2 new handouts this week, available online.

• Enrollment is up to 142 students! That means we’ll be having more like
6 or 7 TFs as opposed to 2. Whew. Say hello to Jesse Cohen, our newest
addition, a junior at Harvard College.

2 Project 0 (2:00–10:00)

• As we mentioned last time, for Project 0 you’ll be getting yourself set up
on teh interwebs by buying a domain name and configuring it to use the
course’s web server. To do so on GoDaddy, you’ll type in your chosen
domain name, click through a series of attempted upsells by selecting “No
thanks,”1 and checking out. Once you’ve purchased your domain name,
you’ll need to login to GoDaddy, click on the Nameservers icon, and enter
in ns1.cs75.net and ns2.cs75.net as custom nameservers.

• Note that you should resist the temptation to navigate to your domain
name until you’ve completed the above steps. If you try to access your
domain name before you’ve told the world where it’s hosted, you’ll be
directed to a GoDaddy IP address which will then be cached by your web
browser or by DNS servers or both. Then you might have to wait up to a
day for the true IP address to propagate.

• There’s one more step to this set up process that we’ve neglected so far.
You’ll need to tell us, by completing the Project 0 survey, what your
domain name as well as your FAS username is. Once you give us this
information, we’ll give you login credentials for cs75.net.

• After you’ve been assigned a username and password, you can login to
panel.cs75.net. Interestingly, you’ll notice when you first attempt to
access this URL, you’ll be warned of a possible security violation. This is
because the course’s SSL (Secure Sockets Layer) certificate has expired.
For the most part, SSL certificates pay lip service to security without
actually heightening security. These days, almost anyone can purchase an
SSL certificate and thus it has no real correlation to how trustworthy a
website actually is.

• In Firefox, to get through to the login forms, you’ll need to click “Or you
can add an exception...” followed by the Add Exception button, the Get
Certificate button, and finally the Confirm Security Exception button.
Make sure the checkbox which says “Permanently store this exception”

1Or, if you’re what we might call a “sucker,” by adding these features to your cart.

2

http://www.cs75.net/surveys/0/

Computer Science 75
Spring 2009
Scribe Notes

Lecture 1: February 2, 2009
Andrew Sellergren

is checked so that you never have to go through this process again (or at
least until you clear your browser cache). In Google Chrome, this process
is as simple as clicking “Proceed anyway.”

• Once you login to DirectAdmin and click DNS Management, you’ll see a
lot of familiar DNS records which we reviewed last lecture. If you decide
to tinker with these, be sure to make a note of all the changes you make
so that you can undo them if you need to.

• One of your tasks for Project 0 will be to create a subdomain which will
map to a directory that contains all of Project 0’s files. You will do the
same for the rest of your projects so that they will all be housed on a
single domain in an organized fashion.

3 Apache and Web Server Configuration (10:00–50:00)

• It’s time we learned a little more about the brand of web server we’ll be
using most frequently in this course. The advantages of Apache begin
with its being both free and open-source. While IIS (Internet Information
Services), the Microsoft-brand web server, offers similar functionality, it
simply ain’t cheap. We’re going to abstain from most of the religious
debates surrounding Microsoft vs. non-Microsoft products, but suffice it
to say that we’re voting with our wallets at least in this case.

• One of the features which Apache (and also IIS) provides is virtual hosting.
Recall from last time that this enables a web server to host more than one
domain name. Tucked into the HTTP header is a line of text which begins
with “Host:” and represents what the user actually typed into his address
bar. In this way, the web server that hosts multiple domain names can
know which webpage to spit back out when it receives a request.

• One of the gotchas of SSL certificates is that you need a dedicated IP
address for an SSL-based website. The reason is that some of the header
information is encrypted and can only be decrypted by the appropriate
host. But how could a web server that hosts multiple domain names
know which domain name is the correct one until it has decrypted this
information? Here we have a chicken and the egg problem, clearly. As a
result, if you want an SSL certificate for your site, you’re going to have to
pay an additional monthly fee to a commercial host so that it will provide
you with a unique, dedicated IP address.

• The configuration file for Apache is httpd.conf. Below you’ll see an
excerpt from the course server’s configuration file:

<VirtualHost 64.131.79.130:80>
ServerName www.malanrouge.com
ServerAlias www.malanrouge.com malanrouge.com

3

Computer Science 75
Spring 2009
Scribe Notes

Lecture 1: February 2, 2009
Andrew Sellergren

ServerAdmin webmaster@malanrouge.com
DocumentRoot /home/malan/domains/malanrouge.com/public_html

SuexecUserGroup malan malan
CustomLog /var/log/httpd/domains/malanrouge.com.bytes bytes
CustomLog /var/log/httpd/domains/malanrouge.com.log combined
ErrorLog /var/log/httpd/domains/malanrouge.com.error.log

<Directory /home/malan/domains/malanrouge.com/public_html>
Options All
suPHP_Engine ON
suPHP_UserGroup malan malan

</Directory>

</VirtualHost>

This is an excerpt from a very large text file which is actually composed
of multiple smaller files. Notice that it’s somewhat similar to an XML
file in that it has open and close tags, simply by convention. What’s the
significance of the 80 after the IP address at the top? This is a port number
which corresponds to web traffic. We’re saying to the server: listen for
web traffic at this IP address on this specific port number.

• Notice that next to ServerAlias we’re specifying that the web server
should respond the same to requests for www.malanrouge.com and
malanrouge.com.

• ServerAdmin isn’t so important except in the case that the webpage fails
completely to load, in which case the webmaster’s e-mail address will be
displayed by default.

• The DocumentRoot line is important to dissect. This is where the actual
mapping of a domain name to a file directory takes place. In this case,
we’re telling the web server that the files for this domain name are located
in the public_html subdirectory of the malanrouge.com directory. In
fact, this naming convention for the directories was actually generated
automatically by DirectAdmin, which makes it easy to administer multiple
domains from a single account.

• The lines beginning with CustomLog and ErrorLog are, as you might ex-
pect, setting various logging options but aren’t too important to examine.

• Within the Directory tag, you can see that we’ve waved our hands at the
options by simply turning them all on by default (some examples include
following symbolic links or viewing the contents of a web directory).

• What’s the deal with the suPHP lines? suPHP stands for Superuser PHP,
which is simply an allusion to the Linux notion of a user who has root

4

Computer Science 75
Spring 2009
Scribe Notes

Lecture 1: February 2, 2009
Andrew Sellergren

permissions. What suPHP requires is that when a user executes code on
the server, he does so as the owner of that file. The alternative is that
every user executes code as the same user like nobody or apache. This
alternative has two major problems associated with it: first, if the web
server is shared, then anyone else who has access to it will be able to read
your code and thus potentially steal your intellectual property since your
files will have to be world-readable; second, if a user uploads personal
files whose location is discovered by a malicious user, this malicious user
actually has permissions to read and delete those files. suPHP addresses
these problems by isolating users.

• A few more details about DirectAdmin (in answer to student’s questions):

– It places each user in his own user group, thus malan in the user
group malan.

– It hardcodes the port 80 into the VirtualHost tag, but this is actu-
ally not necessary, but simply to be explicit.

– It runs its own web server which isn’t meant to be accessed except
by itself, so any other web server actually has to live at a port other
than 80. In this case, it is port 2222, which you’ll notice you are
automatically redirected to when you visit panel.cs75.net thanks
to a PHP script.

– Virtualmin is similar in spirit and functionality to DirectAdmin.

• If you recall from last week, one of our goals was to make sure that
malanrouge.com and www.malanrouge.com were both functional. David
issued a challenge to find a website which didn’t accomplish this and
mentioned that you shouldn’t look very far. Sure enough, a few stu-
dents discovered that our very own Harvard requires that you type in
www.harvard.edu, not just harvard.edu. For shame!

• Next unofficial homework assignment: figure out why Harvard’s website
doesn’t have this functionality. Is it because there’s no DNS record for
harvard.edu? Is it a virtual hosting problem such that the config file
doesn’t have a server alias listed? Try messing around with ping and
nslookup and see what you can find out.

• Let’s make sure that malanrouge.com doesn’t have the same problem.
In fact, we want to make sure malanrouge.com actually gets remapped
as www.malanrouge.com, if only for the sake of branding. How do we
accomplish this? As ugly as it seems, we can do this by pasting the
following lines of code into the .htaccess file on our Apache build:

RewriteEngine On
RewriteCond %{HTTP_HOST} !^www.malanrouge.com$ [NC]
RewriteRule (.*) http://www.malanrouge.com/$1 [R=301,L]

5

Computer Science 75
Spring 2009
Scribe Notes

Lecture 1: February 2, 2009
Andrew Sellergren

Because we turned on all the options for you in the httpd.conf file, you are
now empowered to create a .htaccess file in your public_html directory
which will be accessed by Apache everytime a request is made for any file
in that directory or any subdirectory therein.

• What do these lines of code actually do? The first line is going to turn on
the rewrite engine, as you might have guessed. The second line is a con-
dition for rewriting: “If the host is not equal to www.malanrouge.com...”
The ! or bang means “not,” the m̂eans “starts with,” and the $ means
“ends with.” The NC means “not case,” or rather case-insensitive. Finally,
the third line: “...put everything after http://www.malanrouge.com.”
Here, the (.*) stands for “everything after the first forward slash,” which
by convention is stored in a variable called $1. Then, it will tack this on
the end of the full web address and spit out a 301 “Moved Permanently”
header (hence the R=301). The ,L means “this is the last rewrite rule.”

• When in doubt, clear your cache! After we’ve done this, we notice that
the www gets added in now when we navigate to malanrouge.com. Why
is this good? Firstly, there’s the branding issue. Secondly, search engines
like Google will respect these response codes and cache the address which
you redirect all your traffic to. Why might this be bad though? Well, your
servers are going to be hit twice by people who type in the URL which
you are redirecting. Then again, Google does this, so it can’t be but so
bad in terms of load.

• We began our story by adding DNS records for both www.malanrouge.com
and malanrouge.com, so at this point in our story, both requests will have
been directed here. Only this .htaccess file will then cause them both
to be funneled to the same URL.

• Would it be possible to exploit the fact that harvard.edu does not resolve?
A disgruntled employee with access to Harvard’s DNS servers could, of
course, add an A record to redirect that traffic elsewhere. Beyond that,
anyone who has control over DNS responses between you and the rest
of the internet could do likewise. For example, some ISPs have actually
gotten in trouble for redirecting unregistered domain names to websites
containing advertisements.

• It’s worth noting that we could’ve, in fact, accomplished the same redirect
using a simple PHP script, but this isn’t really an optimal solution.

• A quick note about XAMPP: as we mentioned last time, this is an ex-
tremely useful software bundle that will allow you to develop on your
home machine, even without an internet connection. Check out the in-
stallation directions here which were created by Keito Uchiyama, a former
teaching fellow.

6

http://www.keitr.com/tutorials/xampp

Computer Science 75
Spring 2009
Scribe Notes

Lecture 1: February 2, 2009
Andrew Sellergren

4 PHP (50:00–97:00)

• Our study of PHP will focus not on the quirks of its syntax, but moreso on
the conceptual underpinnings of the language itself. Know that the online
documentation for PHP is your best friend! For functions, it provides not
only information on return values and arguments, but also examples of
their usage.

• Unlike C or C++ or other compiled languages, PHP is an interpreted
language. This means it is not as high-performing, but for the purposes of
rendering web content and accessing databases, it is perfectly well-suited.
With add-ons like memcached, PHP’s performance can even be improved.

• PHP code is stored simply in a text file which begins with the tag <?php
or <? (if the server is configured to interpret short tags) and ends with the
tag ?>.

• What do we mean when we say PHP is installed on a server? That means
that any request for a file ending in .php is not served up as static content
but is rather passed to a program on the local server (e.g. /usr/bin/php
or php.exe) which interprets the code it contains. After interpreting the
code, the content which is output by the PHP program is passed back to
the user’s browser.

• Debugging PHP is not necessarily as straightforward as it might be. To
help you out, we’ve installed some modules that will spit out debugging
info like line numbers in the event of an error.

• Recall from last time our introduction to forms. Let’s apply this to the
real world and examine the source code for Google’s home page. If we boil
it down to just the form elements, we are left with the following:

<form action="/search" name=f>
<input name=hl type=hidden value=en>
<input autocomplete="off" maxlength=2048

name=q size=55 title="Google Search" value="">

<input name=btnG type=submit value="Google Search">
<input name=btnI type=submit value="I’m Feeling Lucky">
</form>

For all practical purposes, this is all it takes to implement Google search
on the front end!

• So what will the HTTP header look like when we enter a query of foo into
Google and click Google Search? It will look something like the below:

GET /search?q=foo HTTP/1.1

7

Computer Science 75
Spring 2009
Scribe Notes

Lecture 1: February 2, 2009
Andrew Sellergren

Recall from last time the GET and HTTP/1.1. Something new, however,
is the search?q=foo after the forward slash. All this means it that we’re
requesting not the root directory, but rather a file called search. More
than that, we’re passing it a parameter called q which in this case holds
the value of our search query. If there were other parameters being passed
via the GET method, they would be separated by the & symbol.

• Another type of HTTP request is the POST method. One of the problems
with the GET method, as you might have guessed, is that it must be tacked
onto the end of the URL. This means that the length of the URL imposes
limitations on the number and type of variables that may be passed. In
addition, any variables that are passed are not obscured. Passwords, for
example, should definitely not be transmitted via the GET method. The
POST method, on the other hand, provides at least some measure of se-
curity and imposes no limitations on the amount of data that can be
transmitted. Data transmitted via the POST method is transmitted in the
body of the HTTP request as opposed to the headers.

• So how might we fake an HTTP request like the above? Check out the
lines of code below:

<form action="/search" method="get">
<input type="hidden" name="q" value="foo" />
<input type="submit" value="Fake Query" />

</form>

When we click the Fake Query submit button, the value of foo will be
passed as the variable q to the file search, just like the HTTP header
above implied.

• If we change the lines above like so, we could actually implement our own
Fake Google:

<div align="center>
<h1>Fake Google</h1>
<form action="http://www.google.com/search" method="get">
<input type="text" name="q" />

<input type="submit" value="Fake Google Search" />

</form>
</div>

Notice that we’ve changed the action attribute to be the hardcoded web
address of Google Search. That’s, of course, because if we upload this to
our own web directory, we won’t have a search file as Google does on
their servers.

8

Computer Science 75
Spring 2009
Scribe Notes

Lecture 1: February 2, 2009
Andrew Sellergren

• So what if we needed to transmit login information rather than a simple
search query? As mentioned before, we’d want to use the POST method
rather than the GET method. It’s worth noting that even if you change the
type of HTML input to be a password field, the information will still be
transmitted over the wire in plain view. Not ideal, especially considering
that it will be cached and saved in the browser history, etc.

• What’s the final step to implementing Fake Google? If we want to recreate
the logo, we can go to http://googlefont.com/, type in Fake Google, and
download a GIF. Then, we need to SFTP the file to our web directory
(perhaps using a client such as SecureFX) and change the permissions
on it so that it’s world-readable. Finally, we include the following line of
code:

That’s all there is to it!

• Still, we haven’t accomplished very much. After all, we didn’t actually
implement the search functionality of Google. But perhaps we can begin
to at least implement some server-side dynamic code. Finally, some PHP:

<?php
print("hello world);

?>

If we place this code in a file called search.php, which we don’t, in fact,
need to change the permissions on, we see that we will get “hello, world”
outputted to the browser. Not very impressive, but, hey, at least it works,
right?

• What if we include the PHP code above in our original XHTML imple-
mentation of Google. Wouldn’t you know it, it still works! That’s the
beauty of PHP is that it can be streamlined with static XHTML content.
In fact, a file which contains only XHTML content but which has the
file extension .php can still be considered a perfectly functioning PHP
program.

• Now, let’s spice up the code a little bit. Take a look at the below:

<?php

print("Your query was: " . $_GET["q"]);

?>

9

Computer Science 75
Spring 2009
Scribe Notes

Lecture 1: February 2, 2009
Andrew Sellergren

Note that . is the concatenation operator and that $_GET is a superglobal
variable which automatically is loaded up with the data that has been
passed to it via the GET method. In fact, it will be an associative array
indexed by the names of the variables we have been passed. If we type
in “something random” into our search box, we will get “Your query was
something random.” outputted to the browser.

• We can also change the HTTP request to POST and access the same vari-
able using the superglobal $_POST as opposed to $_GET.

• Even though we have comingled PHP with XHTML, the PHP is not ac-
tually outputted to the browser. This goes back to its nature as an inter-
preted language.

• What if we want to view all the contents of the $_GET variable? We can
use the code below:

<pre>
<?php

print_r($_GET);

?>
</pre>

This will simply display the entirety of the superglobal array. The <pre>
tags imply that their content is pre-formatted text, so it will display a
little more cleanly. This is a useful debugging trick since the print_r
function will recursively print out the contents of any variable, including
objects.

• Variables in PHP begin with $, as has already become obvious.

• The following types exist in PHP:

– boolean

– integer

– float

– string

– array

– object

– resource

– NULL

10

Computer Science 75
Spring 2009
Scribe Notes

Lecture 1: February 2, 2009
Andrew Sellergren

– mixed

– number

– callback

PHP is very loosely typed. None of these types are declared explicitly,
and there’s a lot of implicit conversion which goes on. If you add ’1’ and
the integer 2, you’ll get back the integer 3.

• This is arguably an advantage of PHP because, at the end of the day,
all the variables which are being passed to PHP via HTTP requests are
simply strings.

• Nonetheless, data types are distinguishable. The manual will always spec-
ify what data types are returned. Still, when you declare a variable, you
don’t specify its type.

• In PHP, there exists not only the assignment operator = and the equality
operator ==, but also the identity operator ===. This means that not only
the value but also the type of the two operands will be checked.

• One of the advantages of PHP is that functions can return several different
data types. Herein lies the usefulness of the identity operator.

• Here’s some reading material: http://us2.php.net/manual/en/language.
references.php.

• Aaaaand a list of the superglobals:

– $_COOKIE

– $_ENV

– $_FILES

– $_GET

– $_POST

– $_REQUEST

– $_SERVER

– $_SESSION

Note that the $_REQUEST variable will contain all the data passed by either
the GET method or the POST method, but its use is discouraged because
we think it’s important that you exercise control over your code as far as
possible.

• If you wanna see a whole ton of information that is always accessible by the
server, try printing out the contents of the $_SERVER variable. Remember
how?

• Know that there’s a whole slew of array functions available in PHP!

11

http://us2.php.net/manual/en/language.references.php
http://us2.php.net/manual/en/language.references.php

	Announcements (0:00--2:00)
	Project 0 (2:00--10:00)
	Apache and Web Server Configuration (10:00--50:00)
	PHP (50:00--97:00)

