
Computer Science 75
Fall 2009
Scribe Notes

Lecture 9: November 16, 2009
Andrew Sellergren

Contents

1 Announcements (0:00–2:00) 2

2 Ajax (2:00–105:00) 2
2.1 Introduction . 2
2.2 Data-driven Websites . 2
2.3 Getting Started . 3
2.4 Examples . 5

2.4.1 ajax1.html . 5
2.4.2 ajax2.html . 10
2.4.3 ajax3.html . 11
2.4.4 ajax4.html . 11
2.4.5 ajax5.html . 12
2.4.6 ajax6.html . 13
2.4.7 ajax7.html . 13
2.4.8 ajax8.html . 14
2.4.9 ajax9.html . 16
2.4.10 ajax10.html . 16
2.4.11 ajax11.html . 17
2.4.12 ajax12.html . 17

1

Computer Science 75
Fall 2009
Scribe Notes

Lecture 9: November 16, 2009
Andrew Sellergren

1 Announcements (0:00–2:00)

• Check out The CS 50 Store! Sure, why not?

2 Ajax (2:00–105:00)

2.1 Introduction

• Notice the lower-case letters in “Ajax.” Formerly, it was an acronym that
stood for “asynchronous JavaScript and XML,” but these days, since data
can be returned from requests in many more formats than just XML, its
meaning as an acronym has lost significance.

• Ajax is a technology by which HTTP requests can be made after a page
has already loaded in order to seamlessly retrieve additional data without
the need for a page refresh. Sometimes a page refresh will do the job just
fine—for example, in David’s Shuttleboy app, the page refreshes every 60
seconds or so rather than retrieving data via Ajax. Soon, however, David
will update Shuttleboy to use Ajax.

• As we mentioned last time, Kayak is a an excellent example of how to use
Ajax to improve a user interface. Google Maps one-upped MapQuest when
it first came out by implementing its map with a smooth drag feature. The
map tiles surrounding a location are downloaded on demand to create this
smooth effect; we can verify this using Live HTTP Headers.

• Luckily, for Project 3, Google will be handling one of the Ajax requests
for us. Using its GClientGeocoder object, you’ll be able to geocode the
address a user inputs. Google will send the request and return you a
response; all you need to do is handle that response appropriately when
it comes.

2.2 Data-driven Websites

• One reason that Ajax is in vogue these days is that data-driven websites
are very popular. Data is becoming increasingly easy to gather from many
different sources. For his own part, David has endeavored to make data
easier to gather data from some of his pet projects like HarvardMaps and
HarvardEvents. One of the recent additions to this list is HarvardFood
which gathers data from the Harvard University Dining Services (HUDS)
menus by screen-scraping their website. Screen-scraping can be accom-
plished by actually traversing the DOM (although this becomes more dif-
ficult if the site isn’t valid XHTML) or by using regular expressions. If
we view the source of the HUDS menu, we see that two CSS classes might
be of use to us in trying to grab item names: item_wrap and menu_item.
Recalling our discussion of XPath, we can search for nodes with these
attributes, the former inside of the latter, with a query that might look
something like this:

2

http://store.cs50.net
http://www.kayak.com
http://wiki.cs50.net/HarvardFood_API

Computer Science 75
Fall 2009
Scribe Notes

Lecture 9: November 16, 2009
Andrew Sellergren

xpath("//div[@class=‘menu_item’]/div[@class=‘item_wrap’]/span/a");

Great, that didn’t take long at all. But what’s the big danger here? If
HUDS decides to change how they display their data, our screen-scraper
is probably going to break. What’s our big assumption? We’re assuming
that the page is valid XHTML. When we plug it in to the W3C validator,
we quickly see that it’s not. If we skim the list of reported errors, we
see that their JavaScript hasn’t been placed in a CDATA section and their
ampersands haven’t been escaped, among other errors. Ideally, all these
errors will be small ones we can fix. In fact, there exists a program called
Tidy that will assist us in doing so. Formerly, it was a command-line
utility, but now there also exists a PHP version. What this tool will do
is fix small errors like unclosed tags and unescaped ampersands so as to
output a valid XHTML document. Once we’ve passed the HUDS menu
to Tidy, we can create a new SimpleXML DOM and perform our original
XPath query on it.

• Once we’ve written our script to grab the menu data, we can automate
the process by creating a cron job. cron is a Linux utility which schedules
tasks to be performed at designated times. The cron job to grab the menu
data runs nightly, for example.

• In fact, by studying the site a little more, we can figure out that it supports
a GET string that includes a date parameter and a meal parameter. So
we can grab breakfast, lunch, and dinner even for future dates if we form
our request properly.

• The HarvardFood API is what’s called a RESTful interface, which ba-
sically means that it responds to queries that are formed as URLs. So
to retrieve the breakfast menu data for 11/11/09 in CSV format, simply
make a request to a URL like so:

http://food.cs50.net/api/1.0/items?date=2009-11-11&meal=Breakfast&output=csv

Recall that Twitter has a RESTful interface for its API. We’ve imple-
mented similar APIs for HarvardEvents, HarvardMaps, etc. Check out
the full list here.

• Question: are there other types of API interfaces out there? Yes, SOAP
and XML RPC are two. Although they’re more heavy-handed than REST,
they do allow more specificity in terms of data types and there are many
libraries and toolkits available to make the job easier.

2.3 Getting Started

• Using Ajax is all about manipulating the XHTML DOM. You might be
adding nodes, deleting nodes, or updating nodes, but ultimately you’ll
be affecting the overall structure of the document. Take a look at these
references below for more about the DOM:

3

http://tidy.sourceforge.net/
http://wiki.cs50.net/APIs

Computer Science 75
Fall 2009
Scribe Notes

Lecture 9: November 16, 2009
Andrew Sellergren

– HTML DOM Reference

– DOM (Document Object Model) Reference

– DOM objects and methods

• The object which actually implements Ajax in JavaScript is the XMLHttpRequest
object. It is implemented slightly differently across different browsers, but
there is some core functionality which is common to all. Take a look at
this list of common methods:

– abort()

– getAllResponseHeaders()

– getResponseHeader(header)

– open(method, url)

– open(method, url, async)

– open(method, url, async, user)

– open(method, url, async, user, password)

– send()

– send(data)

– setRequestHeader(header, value)

• In addition to its methods, the XMLHttpRequest object has the following
properties:

– onreadystatechange

– readyState

∗ 0 (unitialized)

∗ 1 (open)

∗ 2 (sent)

∗ 3 (receiving)

∗ 4 (loaded)

– responseBody

– responseText

– responseXML

– status

∗ 200 (OK)

∗ 404 (Not Found)

∗ 500 (Internal Server Error)

– statusText

4

http://www.w3schools.com/htmldom/dom_reference.asp
http://www.javascriptkit.com/domref/
http://www.howtocreate.co.uk/tutorials/javascript/domstructure

Computer Science 75
Fall 2009
Scribe Notes

Lecture 9: November 16, 2009
Andrew Sellergren

As you might’ve guessed, onreadystatechange is effectively an event han-
dler which allows you to react to any change in the state of your request.
Status code 4 is really the only important one–it means that a response
has come back and been loaded. The properties with prefix response
are exactly what you would expect. This is how you access the data that
you asked for. The status property, of course, corresponds to the HTTP
status code that is returned.

• The basic flow for an Ajax request is as follows: instantiate an XML-
HttpRequest object, open a request, send a request, wait for the response,
then pass the response to a handler function.

• Since the file you’re requesting via Ajax is ultimately on your own server,
you have a choice to make: what’s the format of the data that it will
return? The following are a few examples, all of which are specified by
the Content-type header:

– XHTML (text/html)

– XML (text/xml)

– JSON (application/json)

2.4 Examples

2.4.1 ajax1.html

• Take a look at ajax1.html. Notice that aesthetically, it’s a very simple
form, but it does manage to accomplish something we haven’t yet accom-
plished: delivering content without a page refresh. If you input a stock
symbol and click Get Quote, an alert pops up to display the stock price. If
we look at this using Live HTTP Headers, we see that an HTTP request
for the file quote1.php was made with the stock symbol passed as a GET
parameter. If we access this URL directly, we see that it outputs to the
browser a string representing the stock price. Even ajax1.html, however,
isn’t much fancier than this:

<body>
<form onsubmit="quote(); return false;">

Symbol: <input id="symbol" type="text" />

<input type="submit" value="Get Quote" />

</form>
</body>

Here, we’re deliberately telling the form not to submit itself and reload
(return false;) but rather to make a call to our own function quote().
What’s the substance of quote()? We need only to look to the <head>
tag to find out:

5

Computer Science 75
Fall 2009
Scribe Notes

Lecture 9: November 16, 2009
Andrew Sellergren

<head>
<script type="text/javascript">
// <![CDATA[

// an XMLHttpRequest
var xhr = null;

/*
* void
* quote()
*
* Gets a quote.
*/
function quote()
{

// instantiate XMLHttpRequest object
try
{

xhr = new XMLHttpRequest();
}
catch (e)
{

xhr = new ActiveXObject("Microsoft.XMLHTTP");
}

// handle old browsers
if (xhr == null)
{

alert("Ajax not supported by your browser!");
return;

}

// construct URL
var url = "quote1.php?symbol=" +

document.getElementById("symbol").value;

// get quote
xhr.onreadystatechange = handler;
xhr.open("GET", url, true);
xhr.send(null);

}

/*
* void
* handler()

6

Computer Science 75
Fall 2009
Scribe Notes

Lecture 9: November 16, 2009
Andrew Sellergren

*
* Handles the Ajax response.
*/
function handler()
{

// only handle loaded requests
if (xhr.readyState == 4)
{

if (xhr.status == 200)
alert(xhr.responseText);

else
alert("Error with Ajax call!");

}
}

//]]>
</script>
<title></title>

</head>

Notice we declare a global variable xhr before trying to define it as a
new instance of an XMLHttpRequest object. This variable is global by
virtue of being declared outside the context of any function. If you want
to declare a global variable within a function, then leave off the var at the
beginning of the declaration. We’re also using the try and catch syntax,
which is a way of achieving error-handling. The try and catch syntax
allows you to sandwich together several lines of code and to deal with any
number of different exceptions or errors that result.

• What’s the deal with two different assignments to xhr? Microsoft, liking
to be different, has its own version of the XMLHttpRequest object called
ActiveXObject. We’re kind of abusing the try and catch syntax here,
but effectively we’re saying “If instantiating an XMLHttpRequest object
fails, assume the user has a Microsoft browser and try to instantiate an
ActiveXObject instead.” There are other ways to do this, but this one
is tried and true. Finally, if both those instantiation attempts fail, we’re
assuming that the user’s browser doesn’t support Ajax and we’re providing
him with a message accordingly.

• To construct our URL, we use the + sign to concatenate whatever the
user inputted into the symbol form onto the string quote1.php?symbol=.
There are different ways to get at the DOM nodes that we want, but one
good method is to give them unique IDs and then find them using the
getElementById() method.

• Recall that because of the Same Origin Policy (SOP), the URL we re-
quest must be on our own server. This is a security measure to prevent

7

Computer Science 75
Fall 2009
Scribe Notes

Lecture 9: November 16, 2009
Andrew Sellergren

Distributed Denial of Service (DDOS) attacks. If not for the SOP, a mali-
cious developer would be able to create a site which, when visited, would
spawn thousands of Ajax requests to other web servers and thereby po-
tentially crash them. In the case of Project 3, Ajax requests for more
map tiles and for geocoding are allowed because the code which makes
the requests is hosted on Google’s servers. If you try to request via Ajax
a URL on a different server, you’ll get a browser error of some kind. For
Project 3, we’ll “circumvent” the SOP by establishing a PHP proxy. This
isn’t really thwarting it, though, since all of the requests for Google News
will then originate from our server, which Google can easily blacklist.1 If
the requests were created via JavaScript, they would appear to come from
multiple clients’ IP addresses, not the server’s single IP address. It would
be much more difficult, if not impossible, to blacklist all these IP addresses
to defend against the DDOS attack.

• One advantage of JavaScript is asynchronicity. With JavaScript, we can
call a function and have it call another function—a handler—whenever
a response is returned. That way, we can continue executing the rest of
our code without having to wait for this response. This is great for UI
considerations in which we want to appear like nothing has stalled. If you
do, however, want to turn off the asynchronicity of XMLHttpRequest, you
have that ability by simply specifying false as the third argument to the
open() method. Take a look at these lines:

xhr.onreadystatechange = handler;
xhr.open("GET", url, true);
xhr.send(null);

What we’re doing here is telling the operating environment to call the
handler() function whenever it’s ready to change its state. Then we’re
telling it to send the GET request in an asychronous fashion (using true
as the third argument to the open() method). What does handler() do?
Notice it makes a call to the alert() method (which accomplishes the pop-
up) only if the readyState property is equal to 4 (which means that the
page is loaded) and the overall status is 200 (meaning OK). The argument
to alert() is the responseText property of the XMLHttpRequest object,
which, in this case, is the stock price. w00t.

• As a sidenote, pay attention to capitalization. JavaScript methods are
case-sensitive!

• Question: how can JavaScript and PHP communicate with one another?
Well, we could’ve just as easily assigned our Ajax responseText to a
JavaScript variable instead of passing it directly to the alert function. If

1As a sidenote, they do, in fact, blacklist us quite frequently which is why you’ll occasionally
see dummy results returned by your requests for Google News. We’ve set up a proxy for your
proxy!

8

Computer Science 75
Fall 2009
Scribe Notes

Lecture 9: November 16, 2009
Andrew Sellergren

we wanted to manipulate the stock price as a number, we would have to
pass it to the parseFloat function first.

• Question: what is cron? To execute commands on a specified schedule,
start by typing crontab -e at the command line. This will open up a
configuration file in which you write lines like the following:

*/5 * * * * /home/user/test.pl

This will cause the test.pl script to be executed every 5 minutes, every
hour, every day of the month, every month, every day of the week (rep-
resented from left to right by the *’s). We use cron jobs, for example, to
send SMS reminders for office hours to our teaching fellows and to update
our MySQL database containing the HUDS menus.

• Question: how can Firebug can help us debug? Let’s introduce an error
into our JavaScript: we’ll make a mistake in capitalization. When we try
to look up a stock quote now, we see that the symbol field actually gets
cleared when we click Get Quote. This means that the form is actually
submitting despite our return false in the onsubmit attribute. This is
a good indication that we have a JavaScript syntax error somewhere.

If we open up the Firebug window, we see that it actually doesn’t immedi-
ately catch our errors. So let’s put a breakpoint next to our try statement
on line 34 by viewing it in the Script tab and then clicking the space to the
left of it which adds a red dot. Now when we click Get Quote, execution
of our JavaScript will halt at this line (as denoted by a yellow arrow inside
the red dot). On the righthand side of the Firebug window, we can click
the Watch tab to see the values of variables that are currently in scope.
We see that xhr is undefined and url is undefined.

On the upper right of the lefthand side of the Firebug window, there are
four buttons: one blue arrow followed by three yellow arrows. The blue
arrow will cause our script to Continue, meaning execution will proceed
until the next breakpoint. This is probably too fast for us. Next to is
is Step Into followed by Step Over and Step Out. If the current line is
a function call, Step Into will walk us inside the function and continue
execution. Step Over will walk us past the function call to the next line.
And if we’re currently inside a function, Step Out will jump us out of it
to the caller function. Here, it doesn’t so much matter, but we’ll use Step
Over.

When we click Step Over, we jump all the way to the line that begins
if (xhr == null). That’s because the catch statement didn’t need to
execute since the first instantiation attempt succeeded. On the righthand
side, we can see that xhr is no longer undefined.

When we Step Over the line that defines url, we see that something’s
wrong because it jumps back to the beginning of our function and our

9

Computer Science 75
Fall 2009
Scribe Notes

Lecture 9: November 16, 2009
Andrew Sellergren

page refreshes. Unfortunately, this is our only take-away from Firebug
(although usually it’s more helpful). At least we figured out that the
problem lies on line 51 because of our incorrect capitalization of the
getElementById method.

2.4.2 ajax2.html

• No one likes pop-ups, so how can we achieve this content update in a
more elegant fashion? Take a look at ajax2.html where it differs from
ajax1.html:

document.getElementById("price").value = xhr.responseText;

Notice this change to the line in handler(). Instead of printing the
responseText property to a JavaScript pop-up, we’re going to write it
to a form input with id of price.

• What about quote1.php? Take a look at its code:

<?php

/**
* quote1.php
*
* Outputs price of given symbol as text/html.
*
* Computer Science 50
* David J. Malan
*/

// get quote
$handle = @fopen("http://download.finance.yahoo.com/d/"

. "quotes.csv?s={$_GET[’symbol’]}&f=e1l1", "r");
if ($handle !== FALSE)
{

$data = fgetcsv($handle);
if ($data !== FALSE && $data[0] == "N/A")

print($data[1]);
fclose($handle);

}
?>

Here we’re calling fopen(), which, as you’re probably familiar with by
now, allows you to open URLs like files and start reading from them. If
this call returns true, then we make a call to fgetcsv(), which should
give us only the first row. Then we’re doing a sanity check and making
sure that the symbol is valid before we simply print out its price. Nothing
really all that special.

10

Computer Science 75
Fall 2009
Scribe Notes

Lecture 9: November 16, 2009
Andrew Sellergren

• So this approach is more appealing than the alert window since it’s persis-
tent, but it also allows a user to edit what appears in the text box, which
is not ideal.

2.4.3 ajax3.html

• What’s new with ajax3.html? Nothing much, except that now instead
of writing the stock price to a form, we’re going to write it to a span. To
do this, we change the line of code like so:

document.getElementById("price").innerHTML = xhr.responseText;

Note that writing to innerHTML isn’t technically standards-compliant, but
it’s a fairly widespread (and high-performing) technique. Frankly, the
standards-compliant way of editing the DOM by calling cross-browser
methods to add and update nodes is cumbersome and slow. Generally,
it’s much faster to generate XHTML on the server-side and cramming it
into the DOM.

• If we open up Firebug, we can watch the previous content of this span be
entirely clobbered in realtime. Conveniently, Firebug shows the current
state of the DOM. If we go to View Source, we won’t see the stock price
anywhere in our XHTML.

• Question: is it possible to send multiple Ajax requests? Yes, but you need
to make sure to avoid race conditions. We’ll come back to that.

• Question: could we use the responseXML property instead of responseText?
Yes, but we’d have to make sure to send back valid XHTML from our
proxy. This will automatically be parsed by our browser to populate the
responseXML property. But in this case we don’t so much care about that
extra step, so we prefer to use responseText.

2.4.4 ajax4.html

• For ajax4.html, we’ll be making use of a different proxy. Let’s take a
look at quote2.php, which will return a little more data than before:2.

<?
/**
* quote2.php
*
* Outputs price, low, and high of given symbol as plain/text.
*
* David J. Malan
* Computer Science E-75

2Sorry for the broken URL, but I needed it to wrap across two lines to fully display

11

Computer Science 75
Fall 2009
Scribe Notes

Lecture 9: November 16, 2009
Andrew Sellergren

* Harvard Extension School
*/

// send MIME type
header("Content-type: text/plain");

// try to get quote
$handle = @fopen("http://download.finance.yahoo.com/d/"
. "quotes.csv?s={$_GET[‘symbol’]}&f=e1l1hg", "r");
if ($handle !== FALSE)
{

$data = fgetcsv($handle);
if ($data !== FALSE && $data[0] == "N/A")
{

print("Price: {$data[1]}\n");
print("High: {$data[2]}\n");
print("Low: {$data[3]}");

}
fclose($handle);

}
?>

Here, we’re doing the same as before, except we’re printing multiple lines
of stock data instead of just one.

• In ajax4.html, we’ve taken a bit of a step back in that we’re inserting
into a text box again, but at least we see that Ajax can return more than
just a single stock price with one call.

2.4.5 ajax5.html

• If you take a look at ajax5.html, you’ll see that it prints extra data, as
before, in the innerHTML of a span. Take a look at how we’re returning
this data from a new proxy, quote3.php:

<?
/**
* quote3.php
*
* Outputs price, low, and high of given symbol as text/html.
*
* David J. Malan
* Computer Science E-75
* Harvard Extension School
*/

// try to get quote

12

Computer Science 75
Fall 2009
Scribe Notes

Lecture 9: November 16, 2009
Andrew Sellergren

$handle = @fopen("http://download.finance.yahoo.com/d/"
. "quotes.csv?s={$_GET[‘symbol’]}&f=e1l1hg", "r");
if ($handle !== FALSE)
{

$data = fgetcsv($handle);
if ($data !== FALSE && $data[0] == "N/A")
{

print("Price: {$data[1]}");
print("
");
print("High: {$data[2]}");
print("
");
print("Low: {$data[3]}");

}
fclose($handle);

}
?>

Now we’re returning XHTML instead of plaintext, so we use
 tags
to create newlines rather than \n characters.

• As a sidenote, Shuttleboy achieves page refreshes with the following line:

<meta http-equiv="refresh" content="23" />

The value of content is actually changed dynamically—we check the value
of the server time and calculate the number of seconds until the next
minute.

2.4.6 ajax6.html

• Again, we’ll be using a new proxy, quote4.php, but the only real difference
is that we added a call to sleep() to simulate a slow server response.

• In ajax6.html, we’ll be providing some feedback to the user to let him
know that the response is on its way. While the request has not yet
returned, we write “Looking up symbol...” We accomplish this with the
following line:

document.getElementById("quote").innerHTML = "Looking up symbol...";

2.4.7 ajax7.html

• In ajax7.html, we actually implement animation using only a few extra
lines of code, a few of them being the below:

// show progress
document.getElementById("progress").style.display = "block";

13

Computer Science 75
Fall 2009
Scribe Notes

Lecture 9: November 16, 2009
Andrew Sellergren

Here, we’re dynamically accessing the style property of a div that’s al-
ready in our DOM by virtue of the following XHTML:

<div id="progress" style="display: none;">

</div>

As you can see, it’s just a GIF whose display CSS property is set to none.
If we want to toggle it to be visible, we just change this to the standard
block. Then, in our handler, once our request has returned successfully,
we reset the GIF’s display to none.

• The difference between the display and visibility CSS properties is
that the former takes up no space on the page when it is set to none
but the latter reserves a chunk of space for the element when it is set to
hidden.

• Incidentally, you can create your own progress bar here.

2.4.8 ajax8.html

• The next step we’re going to take is a little bigger. We’ll start by exam-
ining the relevant changes that have been made in quote5.php:

// set MIME type
header("Content-type: text/xml");

// output root element’s start tag
print("<quote symbol=‘{$_GET[‘symbol’]}’>");

// try to get quote
$handle = @fopen("http://download.finance.yahoo.com/d/"
. "quotes.csv?s={$_GET[‘symbol’]}&f=e1l1hg", "r");
if ($handle !== FALSE)
{

$data = fgetcsv($handle);
if ($data !== FALSE && $data[0] == "N/A")
{

print("<price>{$data[1]}</price>");
print("<high>{$data[2]}</high>");
print("<low>{$data[3]}</low>");

}
fclose($handle);

}

// output root element’s end tag
print("</quote>");

14

http://ajaxload.info/

Computer Science 75
Fall 2009
Scribe Notes

Lecture 9: November 16, 2009
Andrew Sellergren

Notice that now we’re declaring a MIME type of XML and we’re spitting
out a few nodes of XML data, though not a complete, well-formed docu-
ment. If we hit quote5.php directly in our browser, we see that we get
output that looks something like this:

<quote symbol="goog">
<price>576.28</price>
<high>576.99</high>
<low>572.78</low>

</quote>

• Now let’s take a look at the new code in ajax8.html:

// get XML
var xml = xhr.responseXML;

// update price
var prices = xml.getElementsByTagName("price");
if (prices.length == 1)
{

var price = prices[0].firstChild.nodeValue;
document.getElementById("price").innerHTML = price;

}

// update low
var lows = xml.getElementsByTagName("low");
if (lows.length == 1)
{

var low = lows[0].firstChild.nodeValue;
document.getElementById("low").innerHTML = low;

}

// update high
var highs = xml.getElementsByTagName("high");
if (highs.length == 1)
{

var high = highs[0].firstChild.nodeValue;
document.getElementById("high").innerHTML = high;

}

Here, as you can see, we’re accessing responseXML as a DOM document
itself, which has been automatically loaded up into memory by our XML-
HttpRequest object. Then we’re going to search it for the tags we know
are there and, since the getElementsByTagName() method returns an ar-
ray, we’re going to ask for the first such tag and access the firstChild
thereof.

15

Computer Science 75
Fall 2009
Scribe Notes

Lecture 9: November 16, 2009
Andrew Sellergren

• You can verify for yourself that if you change the MIME type to plain text,
you can’t parse it like an XML file and our ajax8.html won’t function
properly.

2.4.9 ajax9.html

• In ajax9.html, we’re going to revert back to accessing quote1.php and
proceed to build our own DOM nodes using the following code:

// insert quote into DOM
var div = document.createElement("div");
var text = document.createTextNode(symbol + ": " + xhr.responseText);
div.appendChild(text);
document.getElementById("quotes").appendChild(div);

We’re just creating a new DOM element of type div and then appending,
as a child, the responseText as a new text node. Finally, we append the
div as a child of a div in our whole DOM.

2.4.10 ajax10.html

• As we mentioned before, we have another format for passing data across
the wire known as JSON, or JavaScript object notation. Basically, we’re
taking a JavaScript object, serializing it—or converting it to a string—
and then sending it to be unserialized by the file that requested it. Our
serialized object looks something like this, as displayed in ajax10.html:

{ price: 379.30, high: 390.65, low: 375.89 }

Not too difficult, it’s just a series of key-value pairs separated by commas.
But how do we go about outputting the JSON? First, we’ll need to change
the MIME type of our proxy:

// set MIME type
header("Content-type: application/json");

Of course, we could simply print out the JSON we need manually, as we
do in quote6.php:

// output JSON
print("{ price: $price, high: $high, low: $low }");

• In order to convert our JSON to an actual JavaScript object in ajax10.html,
we use the following line of code:

// evaluate JSON
var quote = eval("(" + xhr.responseText + ")");

16

Computer Science 75
Fall 2009
Scribe Notes

Lecture 9: November 16, 2009
Andrew Sellergren

With this call to eval(), we’re evaluating the responseText as JavaScript,
so it’s being loaded up into memory as an object again. Note that we have
to put parentheses around it. In other contexts, eval() can be a security
concern, but since we’re passing it our own code, presumably this is a safe
context. Now, when we want to access the price that’s returned, we do so
with our dot notation:

var text = document.createTextNode(symbol + ": " + quote.price);

Note we’re taking a more standards-compliant approach by calling createTextNode
rather than clobbering the innerHTML property.

2.4.11 ajax11.html

• One word: debuggin’.3

2.4.12 ajax12.html

• As we’ve said before, the great thing about JavaScript is the multitude
of libraries that are available. Using the YUI library, we can whittle our
Ajax request down to the following:

// make call
YAHOO.util.Connect.asyncRequest("GET", url, { success: handler });

• Know that outputting JSON can be much simpler than printing it man-
ually. In PHP, the json_encode function, for example, will convert an
associative array (or almost anything) to JSON. There are other libraries
to do the same in other languages.

3Technically that was three, I guess. Now nine. Dammit.

17

	Announcements (0:00–2:00)
	Ajax (2:00–105:00)
	Introduction
	Data-driven Websites
	Getting Started
	Examples
	ajax1.html
	ajax2.html
	ajax3.html
	ajax4.html
	ajax5.html
	ajax6.html
	ajax7.html
	ajax8.html
	ajax9.html
	ajax10.html
	ajax11.html
	ajax12.html

