
Computer Science 75
Fall 2009
Scribe Notes

Lecture 8: November 9, 2009
Andrew Sellergren

Contents

1 Announcements (0:00–2:00, 13:00–20:00) 2

2 Project 3 (2:00–13:00) 2

3 JavaScript (20:00–78:00) 3
3.1 Libraries, Code Analyzers, and Compressors 3
3.2 Google Maps . 5

1

Computer Science 75
Fall 2009
Scribe Notes

Lecture 8: November 9, 2009
Andrew Sellergren

1 Announcements (0:00–2:00, 13:00–20:00)

• Because David didn’t make explicit mention of it in lecture and because
it’s been a few weeks since we handed out the specification, we’re extending
the deadline for pre-proposals from today to next Monday. But get them
in as soon as possible! It’s basically just a chance for you to get in touch
with your teaching fellow and find out if your idea is of reasonable scope.
The specification is very general and welcoming, so be creative! You don’t
need to combine every piece of knowledge you’ve gained in this course.
Rather, just pick a few which will showcase your skills.

• Also check out the Fun APIs that we’ve aggregated which may give you
an idea for your final project. TextMarks, for example, is a service which
assists in the process of sending and receiving SMS messages from the web.
Most mobile carriers have e-mail addresses for mobile numbers which auto-
matically forward to mobile devices. David’s Shuttleboy service leverages
this service to send texts with shuttle schedules. If you send a text to
41411 with SBOY and two stops, you’ll get a response with the next shut-
tle times between those two stops. TextMarks is able to serve multiple
customers with the same phone number by asking each customer to choose
a unique moniker (SBOY in our case). They then pass along the user’s
message (a series of arguments) to a URL for that moniker. Once we get
those arguments, we can feed them to our own PHP script which will do
the lookup of shuttle times and generate a response with the corresponding
schedule.

2 Project 3 (2:00–13:00)

• For Project 3, you’ll be creating a mashup of Google News and Google
Maps. What you’ll ultimately present is the familiar Google Maps inter-
face which will allow users to search for addresses. Your application will
then whisk the user away to the location they searched for and will display
up to five markers for the most populous cities within view. These mark-
ers, when clicked, will display links to the top news stories for that city.
To see a working example, you can play around with the staff solution.

• To find the five largest cities in view, you’ll query a zipcodes database
which we purchased here as a CSV file. You’ll be writing a command-line
PHP script which will parse this file and import it into a MySQL database.

• After poking around a bit on Google News, David found that it offered
the ability to search by location and to receive the data in RSS format.
This meant there was a good opportunity to automate a request for news
and parse the response with PHP.

• On the front-end, JavaScript enables responding to the clicking of the Go
button and communicating with the PHP proxy that retrieves the zipcodes
and news.

2

http://wiki.cs50.net/Fun_APIs
http://shuttleboy.cs50.net/
http://www.cs75.net/news/
http://www.zip-codes.com/

Computer Science 75
Fall 2009
Scribe Notes

Lecture 8: November 9, 2009
Andrew Sellergren

• In order to use the Google Maps API, you’ll need to register your domain
for a key. You do this by logging into your Google account and submitting
the name of your domain. You’ll get back a link to the JavaScript source
code for Google Maps. Embedded in this link as a GET parameter will
be the key that identifies your domain. This key will also work with
localhost and 127.0.0.1.

3 JavaScript (20:00–78:00)

3.1 Libraries, Code Analyzers, and Compressors

• Recall from last time this list of popular JavaScript libraries:

– Dojo

– Ext JS

– jQuery

– MooTools

– Prototype

– script.aculo.us

– YUI

We won’t explore these libraries much in this course, but know that they’re
available and they add some syntactic sugar to JavaScript which makes it
much easier to work with. jQuery and YUI are probably among the best
in terms of browser friendliness.

• We’ve tended to use YUI most often in this course because of the attention
it pays to accessibility issues. Generally speaking, however, it is much
more verbose than jQuery, which is probably why jQuery is more popular.
YUI 3 is an attempt to cut down on the clutter, but for now, it has
only been partially released. You’ve already had experience with the YUI
Reset library which attempts to normalize the appearance of web pages
across all browsers. map1.html is a good example of how even simple
pages can appear different in different browsers: Safari and Firefox, for
example, show a thin band of whitespace at the top and left of the map
while IE does not. The YUI Reset library takes care of some annoying
inconsistencies like this. The YUI Fonts library standardizes fonts across
different browsers and the YUI Base library restores some of the stylization
for tags like h1 and h2 which were destroyed by the Reset library. When we
introduce Ajax in the weeks to come, we’ll make use of the YUI Connection
Manager, which greatly simplifies the syntax for making Ajax requests.
YUI also makes available a number of widgets like rich text editors and
calendar controls which would otherwise be tedious to implement.

• Taking a moment to tout some other libraries, take a look at this Dojo
demo of a very cool mouseover effect created with only JavaScript and

3

http://dojotoolkit.org/
http://extjs.com/
http://jquery.com/
http://mootools.net/
http://www.prototypejs.org/
http://script.aculo.us/
http://developer.yahoo.com/yui/
http://demos.dojotoolkit.org/demos/fisheye/

Computer Science 75
Fall 2009
Scribe Notes

Lecture 8: November 9, 2009
Andrew Sellergren

CSS. Script.aculo.us also has demos to play around with and jQuery even
has a UI-specific library with demos. Feel free to use prefabbed modules
like this to build up interesting interfaces for your final project! Be wary
of mixing libraries—they don’t necessarily play well together.

• The spinning hash tag cloud of HarvardTweets, though implemented with
Flash on the back-end, is provided with data via JavaScript.

• All of the libraries listed above are under active development, although
Script.aculo.us and Prototype have started to fall by the wayside.

• Speaking of cross-browser differences, htmladdnormallinkQuirks Mode-
http://www.quirksmode.org/js/contents.html provides an excellent exam-
ination of tiny inconsistencies between browsers. To make sure that your
JavaScript code is cross-browser compatible, you might make use of JS-
Lint, a static code analyzer, which will alert you to syntactic gotchas. It
would be a good idea to run your Project 3 code through this analyzer,
although know that it can be overly anal in some cases, so you don’t need
to worry about satisfying its every little suggestion.

• To make code more portable and less prone to being stolen, you might
choose to compress or minify it before deploying it. A number of com-
pressors are available to do so:

– JSMin

– packer

– ShrinkSafe

– YUI Compressor

To varying degrees, these tools will remove whitespace and shorten vari-
able names to make your code harder to read but also easier to transfer
over the wire. Our code for the mashup, in mashup-min.js, has been
obfuscated to discourage prying eyes. You should feel free to examine our
XHTML source code for the mashup, however.

• Question: does the compressed code run faster? In theory, yes, but prob-
ably not noticeably. It doesn’t change the flow of your code and compres-
sors are not the same as compilers. If you were to encrypt your JavaScript
(with packer, for example), your code would run slightly slower. If you
do want to optimize and compile your JavaScript code, take a look at
Google’s newly release Closure.

• Question: are there any disadvantages to compressing your code? Yes,
you can break it, in fact. If you didn’t end all your lines with semicolons,
for example, your compressed code probably won’t work. That’s one of
the arguments for using a code analyzer like JSLint.

4

http://wiki.github.com/madrobby/scriptaculous/combination-effects-demo
http://jqueryui.com/demos/
http://tweets.cs50.net/
http://www.jslint.com/
http://www.jslint.com/
http://javascript.crockford.com/jsmin.html
http://dean.edwards.name/packer/
http://dojotoolkit.org/docs/shrinksafe
http://developer.yahoo.com/yui/compressor/
http://code.google.com/closure/

Computer Science 75
Fall 2009
Scribe Notes

Lecture 8: November 9, 2009
Andrew Sellergren

3.2 Google Maps

• Know that for the examples we’re about to go over, you’re welcome to run
the source code on your own domain, but it probably won’t work until you
copy and paste in your own API key.

• Google Maps’ API is organized into five categories:

– Basics

– Events

– Controls

– Overlays

– Services

Despite all the documentation being on a single page, it’s actually quite
well-organized at least conceptually. There are two parts to the docu-
mentation: one part with step-by-step examples and one part with an
exhaustive reference.

• What does it take to embed a Google Map in your website? Once you’ve
registered for an API Key, no more than these lines of code:

<script type="text/javascript">
//<![CDATA[

function load()
{

if (GBrowserIsCompatible())
{

var map = new GMap2(document.getElementById("map"));
map.setCenter(new GLatLng(37.4419, -122.1419), 13);

}
}

//]]>
</script>

As before, we’re bracketing the code in CDATA tags so that our XHTML
will still validate. Then we’re calling a function which checks if the user’s
browser is compatible with Google Maps. If it is, then we instantiate a
new GMap2 object and set its center. That’s all there is to it! Well, sort
of. We still have to actually call this function that we’ve defined:

<body onload="load()" onunload="GUnload()">

There we go.

5

Computer Science 75
Fall 2009
Scribe Notes

Lecture 8: November 9, 2009
Andrew Sellergren

• Firebug is an invaluable tool for debugging JavaScript. If you click the
Script tab and open the JS file you want to debug, you can click to the left
of any line of code to place a red dot which represents a breakpoint. Exe-
cution of your JS code will pause wherever you have placed a breakpoint
so that you can examine the contents of variables, etc. The Console tab
will also catch some errors triggered by incorrect syntax. Another useful
Firefox addon is JavaScript Debugger. Chrome and Safari have their own
built-in debuggers now, as well.

• Our next example, map2.html, will fill the entire browser window with
the map using CSS style properties:

<body onload="load()" onunload="GUnload()"
style="height: 100%; margin: 0px;">

<div id="map" style="height: 100%; width: 100%;"></div>

We do this simply by setting the height and width to 100%. Notice,
however, that we must set the height of the body and the html elements
to 100% as well. This is because the height of the div will be set to 100%,
but when the page first loads and the map hasn’t been inserted, the body
will be 0 pixels because it only contains the map, which is still 0 pixels.
So essentially we have a race condition where we’re asking the map to be
100% of the height of the window, but the window has a height of 0 pixels
until the map is filled in.

• So we’ve filled the viewport with the map, but what happens when we try
to add a simple form element?

<form><input type="text" /><input type="submit" /></form>

What happens is that we get an annoying scroll bar that we can never
quite get rid of. This is, of course, because the total height of the page
will always be greater than 100% of the browser window, by virtue of
the additional height of the form. To get rid of this scroll bar, you’ll
probably need to resort to JavaScript, in particular adding a listener for
the window.resize event which will do some arithmetic and calculate how
large the map should be.

• Our next attempt, map3.html, will recreate some of the familiar controls
of Google Maps, besides the built-in drag:

<script type="text/javascript">
//<![CDATA[

function load()
{

if (GBrowserIsCompatible())

6

Computer Science 75
Fall 2009
Scribe Notes

Lecture 8: November 9, 2009
Andrew Sellergren

{
// instantiate map
var map = new GMap2(document.getElementById("map"));

// center map on Science Center
map.setCenter(new GLatLng(42.376649, -71.115789), 13);

// add control using a local variable
var typeControl = new GMapTypeControl();
map.addControl(typeControl);

// add another control without using a local variable
map.addControl(new GLargeMapControl());

// enable scroll wheel and smooth zooming
map.enableScrollWheelZoom();
map.enableContinuousZoom();

}
}

//]]>
</script>

As you can see, we add these controls by calling methods from the Google
API. We can do this by using a temporary local variable, as in the first
case, or simply by instantiating a new object within the method call itself.
The second way is a little cleaner.

• Getting a little fancier, map4.html will finally add one of the red Google
markers that you’re probably familiar with:

<script type="text/javascript">
//<![CDATA[

function load()
{

if (GBrowserIsCompatible())
{

// instantiate map
var map = new GMap2(document.getElementById("map"));

// prepare point
var point = new GLatLng(42.376649, -71.115789);

// center map on Science Center
map.setCenter(point, 13);

7

Computer Science 75
Fall 2009
Scribe Notes

Lecture 8: November 9, 2009
Andrew Sellergren

// mark Science Center
var marker = new GMarker(point);
map.addOverlay(marker);

// associate info window with marker
GEvent.addListener(marker, "click", function() {

// prepare XHTML
var xhtml = "Science Center";
xhtml += "

";
xhtml +=
"<a href=’http://en.wikipedia.org/wiki/Harvard_Science_Center’
target=’_blank’>";
xhtml += "http://en.wikipedia.org/wiki/Harvard_Science_Center";
xhtml += "";

// open info window
map.openInfoWindowHtml(point, xhtml);

});

}
}

//]]>
</script>

• In this example, we store the point which represents the Science Center
because we need to use it to set the center of the map and to create a
marker there.

• As you can see, in the Google Maps API vocabulary, these red markers
which, when clicked, pop up a small information bubble, are called over-
lays. Literally, they’re being laid on top of the rest of the content of our
webpage, probably using something called the CSS Z-index.

• Once we’ve added an overlay at the Science Center’s GPS coordinates,
we register an event handler to the click event of this overlay, which pops
up an information window populated with the XHTML content we’ve
specified. We do this using Google’s API since we want to avoid mixing
libraries whenever possible. The addEventListener() method takes three
arguments: the object to add the listener to, the event to listen for, and a
pointer to the function to call when that event is fired. In the case above,
our event handler is an anonymous or lambda function. This is useful here
because we’re probably not going to need to reference this function ever
again, so why waste a variable name on it? There’s nothing complicated

8

Computer Science 75
Fall 2009
Scribe Notes

Lecture 8: November 9, 2009
Andrew Sellergren

about this function—all it does is build an XHTML string and then pass
it to the openInfoWindowHtml method.

• The syntax we used above to pass a lambda function as an event handler is
known as a closure. What this means is that the anonymous function has
access to all the variables that are in scope at the time it is created. This
might cause problems if we were trying to add more than one marker at
a time since some of the variable values might be overwritten. We won’t
delve into this any deeper for now, but if you run into strange bugs like
this, be sure to ask the staff about closures.

• Recall from weeks ago the file quote3.php which takes a stock symbol as
input and returns the current stock price via Yahoo Finance. We’re going
to make a call to this file in map5.html:

<script type="text/javascript">
//<![CDATA[

function load()
{

if (GBrowserIsCompatible())
{

// instantiate map
var map = new GMap2(document.getElementById("map"));

// prepare point
var point = new GLatLng(37.4419, -122.1419);

// center map on Science Center
map.setCenter(point, 13);

// mark Science Center
var marker = new GMarker(point);
map.addOverlay(marker);

// associate info window with marker
GEvent.addListener(marker, "click", function() {

// prepare Ajax call
var request = GXmlHttp.create();
request.open("GET", "quote3.php?symbols=GOOG", true);
request.onreadystatechange = function() {

// only handle successful calls
if (request.readyState == 4 && request.status == 200)
{

// prepare XHTML

9

Computer Science 75
Fall 2009
Scribe Notes

Lecture 8: November 9, 2009
Andrew Sellergren

var xhtml = "Google";
xhtml += "

";

// get Google’s quote
var quote =
request.responseXML.getElementsByTagName("quote")[0];

// get Google’s price
var price =
quote.getElementsByTagName("price")[0].firstChild.nodeValue;

// report price
xhtml += "$" + price;

// open info window
map.openInfoWindowHtml(point, xhtml);

}
};

// get quote
request.send(null);

});

}
}

//]]>
</script>

Our first foray into Ajax! Now, when we click our red Google marker, we’re
not just inserting static XHTML. We’re actually executing some code.
First, we’re instantiating a cross-browser Ajax request object via Google’s
API—an Ajax request is simply an HTTP request created via JavaScript
and sent after the original page has already loaded. You’ve seen these
requests before, for example in Facebook’s Live Feed. After instantiating
this object, it looks like we’re opening a GET request, checking that it
returns an HTTP Status code indicating “OK,” and finally grabbing the
information we desire from the XML output, in this case, the stock quote
for Google.

• One site that’s made heavy use of Ajax is Kayak, which returns hotel and
plane ticket search results in real time.

• In our staff mashup, there are actually two Ajax requests being made. One
is made to Google’s servers to geocode the address the user has provided.
The second is to retrieve the five largest cities and their news results. This

10

http://www.kayak.com

Computer Science 75
Fall 2009
Scribe Notes

Lecture 8: November 9, 2009
Andrew Sellergren

second request will pass the coordinates of the southwest and northeast
corners of the map and use these to narrow down what cities are returned
from the zipcodes database.

• Of course, it might be easier if instead of passing through a proxy PHP
file, we could directly query Google News using Ajax. However, this would
be a violation of the Same Origin Policy (SOP). For security reasons,
JavaScript cannot communicate with files that aren’t hosted on the same
server. Think of the problems that could arise if someone else’s JavaScript
were allowed to execute on your server!

• To get around the SOP, your PHP proxy will be the one to contact the
Google News servers. You’ll probably want to do some parsing of the
RSS data before sending it back to your JavaScript. RSS (which stands
for Really Simple Syndication or Rich Site Summary), incidentally, looks
something like this:

<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0">

<channel>
<title></title>
<description></description>
<link></link>
<item>

<guid></guid>
<title></title>
<link></link>
<description></description>
<category></category>
<pubDate></pubDate>

</item>
[...]

</channel>
</rss>

Generally, the item element represents a news article, but the RSS format
has been co-opted for many different uses, Podcasts being one example.

• More on Ajax next week!

11

	Announcements (0:00–2:00, 13:00–20:00)
	Project 3 (2:00–13:00)
	JavaScript (20:00–78:00)
	Libraries, Code Analyzers, and Compressors
	Google Maps

