Computer Science 75 Lecture 6: October 26, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

Contents
1 Announcements (0:00—2:00) 2
2 SQL (2:00-60:00) 2
2.1 Interacting with Databases (cont’d). 2
2.1.1 Via PHP (cont’d) 2
2.2 DataTypes 7
2.3 Real World Applications: Faculty Lunch 8
24 JOIN . ..o e 13
2.5 Race Conditions 14
26 C$75 Finance 15

Computer Science 75 Lecture 6: October 26, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

1 Announcements (0:00-2:00)

e Hung Tran is in the lead on The Big Board! His success may be due to
some savvy trading or perhaps just after-hours trading, but in either case,
good work! See if you can catch him!

2 SQL (2:00-60:00)

2.1 Interacting with Databases (cont’d)
2.1.1 Via PHP (cont’d)

o We left off last time with 1ogin6.php, in which we used the SELECT 1 trick
to verify a user’s escaped login credentials against our database. As with
loginb.php, we then checked if the result set contained exactly one row,
which would mean that the login credentials were found in our database.

e We can test our query from within the phpMyAdmin interface by clicking
the SQL tab and hardcoding in a username and password like so:

SELECT 1 FROM users WHERE user = ‘jharvard’ AND pass = ¢12345’;

Once we click Go, we get an empty result set. Oops, wrong password.
Let’s try it again with the correct password:

SELECT 1 FROM users WHERE user = ‘jharvard’ AND pass = ‘crimson’;

Now we get a temporary table returned which has a single row containing
the single value 1. Notice that in the previous case, when the credentials
weren’t found, we got no results. This confirms our logic in login6.php.

e So in the case above when we forgot the password for jharvard, we were
able to quickly look it up in our database. In the real world, in most cases,
this won’t be possible. Even if you provide all the correct identifying in-
formation to an IT help desk, the best they’ll be able to do is to reset your
password. That’s because passwords aren’t generally stored as plaintext,
but rather as encrypted text. This encryption is one-way for security rea-
sons. If a malicious user were ever to crack the database containing these
passwords, he would be unable to use any of them because he wouldn’t be
able to undo this one-way encryption.

e Question: don’t you need to decrypt the password when verifying a user’s
credentials? No, in fact, because you can encrypt the user’s input using
the same one-way algorithm. If the results of that encryption matches the
encrypted password stored in the database, then the user can be logged
in. There is, however, some insignificant probability (say, 1 in 4 billion or
so0) that two plaintext inputs will produce the same encrypted output.

Computer Science 75 Lecture 6: October 26, 2009

Fall 2009
Scribe Notes

Andrew Sellergren

e Let’s take a look at login7.php to see how we implement this password

encryption:
<7
/%%
* login7.php
*
* A simple login module that checks a username and password
* against a MySQL table with weak encryption (well, a weak hash).
*
* David J. Malan
* Computer Science E-75
* Harvard Extension School
*/
// enable sessions

session_start();

//
if

//
if

//
if
{

connect to database
(($connection = mysql_connect("", "", "")) === FALSE)
die("Could not connect to database");

select database
(mysql_select_db("", $connection) === FALSE)
die("Could not select database");

if username and password were submitted, check them
(isset ($_POST["user"]) && isset($_POST["pass"]))

// prepare SQL

$sql = sprintf ("SELECT 1 FROM users
WHERE user=’Y%s’> AND pass=PASSWORD(’%s’)",
mysql_real_escape_string($_POST["user"]),
mysql_real_escape_string($_POST["pass"]));

// execute query
$result = mysql_query($sql);
if ($result === FALSE)
die("Could not query database");

// check whether we found a row

if (mysql_num_rows($result) == 1)

{
// remember that user’s logged in
$_SESSION["authenticated"] = TRUE;

Computer Science 75 Lecture 6: October 26, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

// redirect user to home page, using absolute path, per
// http://us2.php.net/manual/en/function.header.php
$host = $_SERVER["HTTP_HOST"];

$path = rtrim(dirname ($_SERVER["PHP_SELF"1), "/\\");
header ("Location: http://$host$path/home.php");

exit;

7>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Log In</title>
</head>
<body>
<form action="<? echo $_SERVER["PHP_SELF"]; 7>" method="post">
<table>
<tr>
<td>Username:</td>
<td>
<input name="user" type="text" /></td>
</tr>
<tr>
<td>Password:</td>
<td><input name="pass" type="password" /></td>
</tr>
<tr>
<td></td>
<td><input type="submit" value="Log In" /></td>
</tr>
</table>
</form>
</body>
</html>

The only difference between login7.php and previous versions is the in-
vocation of the PASSWORD function in SQL. Let’s examine in phpMyAd-
min what the output of this function might look like. If we type SELECT
PASSWORD(‘crimson’), we’ll get the following output:

*02A501BC718BBD7927FC5805D858811E3C3F 1825

This output must match what’s stored in our database in order for us to
authenticate the user. But this value shouldn’t be stored in our database

Computer Science 75 Lecture 6: October 26, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

as a VARCHAR, but rather as a BLOB, or binary large object. Once we’ve
changed the data type of our pass field, we can execute the following

query:

INSERT INTO users (user, pass)
VALUES (jharvard’, PASSWORD(‘crimson’));

e Although it’s a useful starting point in learning encryption, PASSWORD,
is not a very strong algorithm and can be pretty easily cracked. The
AES (advanced encryption standard) algorithm is much stronger. Thank-
fully, MySQL provides support for this algorithm as well, as we’ll see in

login8.php:
<?
/%%
* login8.php
*
* A simple login module that checks a username and password
* against a MySQL table with strong encryption (but insecure secret).
*
* David J. Malan
* Computer Science E-75
* Harvard Extension School

*
~

// enable sessions
session_start();

// connect to database
if (($connection = mysql_connect("", "", "")) === FALSE)
die("Could not connect to database");

// select database
if (mysql_select_db("", $connection) === FALSE)
die("Could not select database");

// if username and password were submitted, check them
if (isset($_POST["user"]) && isset($_POST["pass"]))
{
// prepare SQL
$sql = sprintf("SELECT 1 FROM users
WHERE user=’%s’ AND pass=AES_ENCRYPT(’%s’, ’secret’)",
mysql_real_escape_string($_POST["user"]),
mysql_real_escape_string($_POST["pass"]));

// execute query

Computer Science 75 Lecture 6: October 26, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

$result = mysql_query($sql);
if ($result === FALSE)
die("Could not query database");

// check whether we found a row

if (mysql_num_rows($result) == 1)

{
// remember that user’s logged in
$_SESSION["authenticated"] = TRUE;

// redirect user to home page, using absolute path, per
// http://us2.php.net/manual/en/function.header.php
$host = $_SERVER["HTTP_HOST"];

$path = rtrim(dirname($_SERVER["PHP_SELF"1), "/\\");
header("Location: http://$host$path/home.php");

exit;

>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Log In</title>
</head>
<body>
<form action="<? echo $_SERVER["PHP_SELF"]; 7>" method="post">
<table>
<tr>
<td>Username:</td>
<td>
<input name="user" type="text" /></td>
</tr>
<tr>
<td>Password:</td>
<td><input name="pass" type="password" /></td>
</tr>
<tr>
<td></td>
<td><input type="submit" value="Log In" /></td>
</tr>
</table>
</form>
</body>

Computer Science 75 Lecture 6: October 26, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

</html>

In addition to AES_ENCRYPT, there is a MySQL function named AES_DECRYPT,
which implies that AES is actually a two-way encryption algorithm. Un-
like PASSWORD, the results of AES_ENCRYPT can actually be undone.!Two
arguments are supplied to AES_ENCRYPT: the string to be encrypted and
the secret key by which it will be encrypted. In this example, we hard-
code in the value secret as our secret key. Well, now we have a stronger
cryptographic algorithm, but if a malicious user steals our database and
our PHP source code, he can decrypt all the passwords in the database.

e One solution to this quandary is to use the user’s password as both the
string to encrypt and the secret key by which it will be encrypted—in other
words, pass it as both arguments to AES_ENCRYPT. What’s the catch?
Well, now we can’t decrypt passwords because there’s a Catch-22: we
need the user to provide the correct password so that we can decrypt his
password. In the real world, as we’ve seen, we don’t really need this ability
to decrypt passwords since we can simply reset them. In the world of
theory, encrypting a password with itself prevents us from making strong
claims about the uniqueness of the encrypted output, but for the most
part, we can wave our hands at this.

e Another concern that we need to consider is that if a malicious user gains
access to the database and scans the list of passwords, he will be able to
notice if two users have the same encrypted password. Knowing this, he’ll
have more information toward guessing the plaintext password. To prevent
this, we might perturb the encryption algorithm, so to speak, by adding
an extra piece to the secret key—perhaps concatenate the username with
the password to create the secret key.

e What we’ve been talking so far tonight is one-factor authentication, mean-
ing you only have to know a single password to login. One step above this is
two-factor authentication, which involves not only a password but a pseu-
dorandom number generator which you carry on your person. This num-
ber generator creates a pseudorandom number several times per minute in
sync with the server. So when you go to login, you provide your password
as well as the current number on the generator.

2.2 Data Types

e MySQL has numerous different data types. For the purposes of this course,
you probably won’t notice a difference in performance even if you declare
all your fields as strings. However, in general, you should aim to constrain
your data types as much as possible, both to save space and to prevent
invalid data.

L Although encryption methods generally tend to implement randomness to increase secu-
rity, we can’t be truly random because we need to be able to recreate that randomness in
order to authenticate users.

Computer Science 75 Lecture 6: October 26, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

e For most text input, VARCHAR is probably the best option. It has a maxi-
mum length of 65,536 characters and it will only use as many as necessary.
Space-wise, this is advantageous. Performance-wise, however, there is an
advantage to fixed length, as CHAR provides, for example, because the
engine can optimize how it accesses the data if it knows with certainty
how the data is laid out in memory. Longer text fields such as TEXT or
LONGTEXT are useful when you want to store something like user com-
ments or news articles. HarvardNews, for example, stores articles in TEXT
columns because it supports fulltext search.

o MySQL offers numerous date data types, including DATE, DATETIME, YEAR,
TIME, and TIMESTAMP. The first four might all be used to record when an
order was placed or an article was posted, for example. The last is espe-
cially useful for recording when an update was made to the database. If
you use the data type TIMESTAMP, you can specify ON UPDATE CURRENT_TIMESTAMP
as an attribute, which will record the time when the row was updated.

e In terms of numbers, all the different variations of integers are available, as
well as FLOAT and DOUBLE. One extra number data type worth mentioning
is DECIMAL, which allows you to specify how many places to the left and to
the right of the decimal point you'd like to store. This is especially useful
when you’re dealing with money (think Project 2) when tiny imprecisions
might lead to glaring errors (think Superman 3 and Office Space).

e The binary data types, e.g. variations of BLOB, allow you to store binary
data from password encryption algorithms or even the raw stuff of graph-
ics. Although there are arguments that go both ways, generally it’s not
recommended to store full-fledged graphics in a database. You're better
off storing a filename or path in the database and the actual graphics file
on the file system.

e One other data type worth mentioning: ENUM allows you to specify exactly
what values a field might take. For example, if you know a field will only
take values ‘foo’; ‘bar’, or ‘baz’, then you can enumerate them and their
storage will be optimized. This also helps with data validation.

e Question: is it possible to have a field take on a value only when it is first
inserted and not when it is updated? Yes, using the DEFAULT keyword.

e To be on the safe side, you should probably use PHP’s sprintf to prepare
numbers or strings for insertion into a DECIMAL field so that you can be
sure the right number of decimal places are filled.

2.3 Real World Applications: Faculty Lunch

e Last year, the computer science faculty for the engineering school would
gather every week for lunch catered by Rebecca’s Cafe. Previously, the
process for ordering lunch consisted of e-mailing a staff member with a

Computer Science 75 Lecture 6: October 26, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

particular request. David felt that twenty-some tech-savvy faculty or-
dering sandwiches in this tedious, non-automated fashion was a little too
ironic. So he decided to implement an online ordering system which would
streamline the process. Interestingly, he found that copying and pasting
the menu into XML format was probably the fastest way of converting
the menu to machine-readable format. Check out the production version
of the site.

e To break it down into more manageable chunks, we can examine the de-
velopment version of the site:

<7
$xml = new SimpleXMLElement(file_get_contents("menu.xml"));
7>

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmli-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Lunch</title>
</head>
<body>
<form action="sqlite.php" method="post">
Name: <input name="name" type="text" />
<input type="submit" value="Submit Order" />

<table border="0">
<? foreach ($xml->xpath("/menu/category[@name=’Specialty Sandwiches’]/item")
as $item): 7>
<tr>
<td valign="top"><input id="<7= $item["name"] 7>"
name="item" type="radio" value="<7= $item["name"] ?>" /></td>
<td>
<label for="<?7= $item["name"] 7>">
<?= $item["name"] ?>

<?7= $item 7>
</label>
</td>
</tr>
<? endforeach 7>
</table>
</form>
</body>

http://www.cs75.net/lectures/5/src/lunch/production/

Computer Science 75 Lecture 6: October 26, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

</html>

Here, we see that we’re using a little bit of XPath to iterate over the
Specialty Sandwiches category of the menu and to print out radio buttons
for each. Now let’s take a look at sqlite.php, which is the page that this
form submits to

<?

// ensure complete form was submitted

if ('isset($_POST["name"]) || !isset($_POST["item"]))
{
header("Location: http://www.cs75.net/lectures/5/src/lunch/lunch.php");
exit;
}
try
{
// open database
$dbh = new PDO("sqlite:orders.db");
$dbh->setAttribute (PDO: : ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION) ;
// prepare fields
$name = $dbh->quote ($_POST["name"]);
$item = $dbh->quote($_POST["item"]);
// insert order
$dbh->exec ("INSERT INTO orders (name, item) VALUES($name, $item)");
}
catch (PDOException $e)
{
die($e->getMessage());
}

7>

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmli-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Lunch</title>
</head>
<body>
One <7= $_POST["item"] 7> for <7?= $_POST["name"] 7>, coming right up!

10

Computer Science 75 Lecture 6: October 26, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

</body>
</html>

SQLite is useful for lightweight applications like this. To use it, we’ll begin
by instantiating an object of type PDO (portable database object). Then
we call its quote method in order to escape our input and eventually we
call its exec method in order to execute a SQL query. What’s nice about
the PDO API is that if you ever decide to change database engines, you
need only change the initial instantiation of the PDO object and you’re
good to go (as long as you don’t use engine-specific syntax).

e As an aside, if we wanted to write the orders out to a CSV file instead of
a SQLite database, we might submit to a file like csv.php:

<?

// ensure complete form was submitted

if (!isset($_POST["name"]) || !'isset($_POST["item"]))

{
header("Location: http://www.cs75.net/lectures/5/src/lunch/lunch.php");
exit;

3

// open CSV file for appending
$handle = fopen("orders.csv", "a");

// acquire exclusive lock
flock($handle, LOCK_EX);

// add order to CSV file

$order = array($_POST["name"], $_POST["item"]);
fputcsv($handle, $order);

fclose($handle) ;

7>

<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmli-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Lunch</title>
</head>
<body>
One <?7= $_POST["item"] ?> for <7= $_POST["name"] 7>, coming right up!

11

Computer Science 75 Lecture 6: October 26, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

</body>
</html>

In this file, we open a CSV file (in append mode) with an exclusive lock
(meaning only one user can write to it at a time) and then call the
fputcsv() function to convert a PHP array into comma-separated val-
ues.

e Similarly, if we wanted to write orders to an XML file, we might submit
to a file like xml . php:

<?

// ensure complete form was submitted

if ('isset($_POST["name"]) || !isset($_POST["item"]))

{
header("Location: http://www.cs75.net/lectures/5/src/lunch/lunch.php");
exit;

3

// open XML file for reading + writing
$handle = fopen("orders.xml", "r+");

// acquire exclusive lock
flock($handle, LOCK_EX);

// read contents of XML file
$contents = fread($handle, filesize("orders.xml"));

// build DOM out of contents
$xml = new SimpleXMLElement($contents);

// add order

$order = $xml->addChild("order");
$order->addChild("name", $_POST["name"]);
$order->addChild("item", $_POST["item"]);

// overwrite original XML file
rewind($handle) ;
furite($handle, $xml->asXML());
fclose($handle) ;

7>

<!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmll-transitional.dtd">

12

Computer Science 75 Lecture 6: October 26, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Lunch</title>
</head>
<body>
One <7= $_POST["item"] 7> for <7?= $_POST["name"] 7>, coming right up!
</body>
</html>

Here, we again acquire a file lock using the flock() function and we use
the fread() function rather than the file_get_contents() function in
order to retain that lock. Then we go through the rather tedious process
of adding a child to the XML file, where appropriate.

e One other quick aside: the DATE_FORMAT and TIME_FORMAT functions in
MySQL will format your date and time strings in a much more human-
readable fashion.

2.4 JOIN

e We mentioned earlier that redundancy in databases is generally discour-
aged because it wastes space. At the same time, if data needs to be looked
up in a separate table before it can be meaningful to a human, then our
database might suffer in terms of performance. Thankfully, MySQL sup-
ports the JOIN operation, which allows us to combine multiple tables.

e Imagine that we have a number of employees, each of whom might order
some office supplies. If we want to keep track of who orders what office
supplies, we're better off assigning an ID number to each employee so that
we can keep track of their orders by ID number (represented as an INT)
rather than their full name. But ultimately, when we want to view this
data, we want to see the employee’s full name since the ID number means
nothing to a human. So we need the JOIN operation. In some cases,
however, this JOIN might be implicit:

SELECT Employees.Name, Orders.Product
FROM Employees, Orders
WHERE Employees.Employee_ID=0rders.Employee_ID;

This JOIN is implicit because we never actually invoke the keyword. Note
that we specify the table by naming it before the period when we name a
certain column.

e More readable is an explicit JOIN:

SELECT Employees.Name, Orders.Product
FROM Employees
JOIN Orders ON Employees.Employee_ID=0rders.Employee_ID

13

Computer Science 75 Lecture 6: October 26, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

2.5

Race Conditions

Let’s say you’re in college and you and your roommate both desperately
depend on having milk. If either one of you comes back to the dorm, opens
the refrigerator, and finds no milk, he will immediately go out a store and
buy more. But what if you both come back at separate times and find no
milk and you happen to go to separate stores. Then you might both come
back with a bottle of milk and thus your room will have too much.

In the real world, you might solve this problem by leaving a note for
your roommate. In the world of programming, you might actually put
a padlock on the refrigerator. Now your roommate can’t even open the
refrigerator to decide whether he needs to buy milk or not.

Let’s imagine that we’re designing a schema for Project 2. We might have a
users table that has fields for username, password, and cash. Then we’ll
have a separate portfolios table that has fields for username, symbol,
and shares. That way, we can store all the different stocks that a given
user might own, whether it be 1 or 5004. If we wanted to optimize even
further, we might add a uid field to the users table, that way we wouldn’t
have to repeat something so long as a username for the portfolios table.

Let’s say we are a single user who initiates two stock purchases in two
different browser windows. If one of the browser windows decides to sleep
after checking the user’s balance and storing it in a variable, the other
browser might subtract the sale value from the wrong balance. This would
only be a problem if we use the MyISAM storage engine, however, since
with InnoDB we can implement row-level locking. Even with MyISAM
we can implement table-locking:

LOCK TABLES account WRITE;

SELECT balance FROM account WHERE number = 2;
UPDATE account SET balance = 1500 WHERE number = 2;
UNLOCK TABLES;

In this case, we want to make sure that the SELECT and UPDATE operations
don’t execute separately. Instead of using table-locking, we might use row-
level locking using InnoDB:

START TRANSACTION;

UPDATE account SET balance = balance - 1000 WHERE number = 2;
UPDATE account SET balance = balance + 1000 WHERE number
SELECT balance FROM account WHERE number = 2;

suppose account # 2 has a negative balance!

ROLLBACK;

I
[N

Transactions ensure that all the SQL statements therein are executed with-
out interruption.

14

Computer Science 75 Lecture 6: October 26, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

2.6 C$75 Finance

e In terms of registration, you're going to want to perform some validation
and then insert a username and password into your database if everything
checks out.

e Once a user is logged in, you should offer him the ability to look up a stock
quote. You won’t, of course, have to store all the stock data yourself, but
can query Yahoo as needed in order to obtain the most recent stock info.

e In terms of the sell functionality, we only ask that you be able to liquidate
all of a user’s stock at once. In other words, they should be able to sell all
shares of a particular stock at once. Thus, you need only create a simple
hyperlink if you so desire.

15

	Announcements (0:00–2:00)
	SQL (2:00–60:00)
	Interacting with Databases (cont'd)
	Via PHP (cont'd)

	Data Types
	Real World Applications: Faculty Lunch
	JOIN
	Race Conditions
	C$75 Finance

