Computer Science 75 Lecture 5: October 19, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

Contents

1 Announcements (13:00-17:00, 53:00-56:00) 2
1.1 Final Projects 2

2 HarvardTweets (0:00-13:00) 3

3 Project 2 (17:00-23:00) 3

4 SQL (23:00-53:00, 53:00—86:00)
4.1 Interacting with Databases
4.1.1 Via the Command Line
4.1.2 Via DirectAdmin and phpMyAdmin
413 ViaPHP

O O O

Computer Science 75 Lecture 5: October 19, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

1 Announcements (13:00-17:00, 53:00-56:00)

1.1

e Do yourself a favor and get to work early on Project 2! These projects are

designed to take 30+ hours spread out over the course of three weeks. We
noticed a definitive spike in bulletin board posts, e-mails, and phone calls
in the past few nights before Project 1 was due. It’s no fun to be working
on a project at the very last minute.

In terms of grading, we have three axes: Correctness, Design, and Style.
Our focus, however, is on qualitative rather than quantitative feedback
because we feel it is more useful to you in learning. Correctness is a
a matter of fulfilling all the project requirements: is your code mostly
free of bugs? Did you correctly complete all the tasks described in the
specification? Design is a little more subjective. Whereas you may find
yourself getting 3’s, 4’s and 5’s on Correctness at the beginning of the
term, it’s perfectly reasonable to find yourself getting 3’s and lower on
Design. As we, the staff, push you toward better Design with our guidance,
you’ll see these scores improve. Ultimately, improvement is the goal of the
course; 3 out of 5 is not 60%! Finally, Style measures whether your code
is well-commented and pretty-printed with meaningful variable names.
Realize that Correctness is weighted more than Design which is weighted
more than Style.

Question: is there a pre-determined scale or curve? No, not at all. At the
end of the course, we consider each student’s work individually and look
for improvement over the course of the semester.

Final Projects

The final project specification will be posted this week—apologies that it
wasn’t up sooner considering that the syllabus mentioned it would be up
in August! Not to worry, though, it’s still weeks away.

The CS 75 Fair is the culmination of the course and will give you an
(optional) opportunity to display your final project and interact with staff
and other students. It will be held on Monday, December 21 from 6:30
to 8:30 PM in one of Harvard’s computer science buildings. You'll be
displaying your projects alongside students from Computer Science E-T7:
Digital Photography, taught by our own Dan Armendariz. If for no other
reason, come for the cake!

To get you started on final project ideas, check out this list of APIs
we’re borrowing from CS 50. HarvardEvents, HarvardMaps, and Har-
vardTweets will all have their own APIs as well, with documentation
forthcoming.

The final project is meant to be a chance for you to showcase the skills
you've learned in this course, but realize that you don’t need to use every
single language and concept we’ve discussed.

http://wiki.cs50.net/Fun_APIs

Computer Science 75 Lecture 5: October 19, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

2 HarvardTweets (0:00-13:00)

e To motivate today’s discussion of SQL, take a look at HarvardTweets.
HarvardTweets is a PHP- and MySQL-driven site that aggregates posts
from Harvard Twitter users. David managed to write this while sitting in
his hotel room in Virginia and by the end of the course, you will have all
the skills necessary to do the same. Even the tag cloud in the bottom right
is just an open-source Flash animation which is fed with XML. Lots of
fancy-looking content but nothing very complicated underneath the hood!

e Thankfully, Twitter has an API (application programming interface), which
is a set of functions and documentation that allow a programmer to in-
teract with Twitter’s back end. If not for the API, David would’ve had
to resort to screen-scraping, meaning he would have to parse the messy
HTML on Twitter’s actual website in order to gather the data he wanted.
Twitter has a REST (representational state transfer) API, which is to say
that you can query its server for data by hitting a URL that includes a
GET string with certain parameters defined. For example, you can specify
that you want JSON or Atom output returned by the server.

e Once we've queried Twitter’s servers for Harvard users’ posts, we can
iterate over them and insert them into our page. But we can also store
them in our own database so that they can be cached locally and we won’t
have to hit Twitter’s server every time a user searches our page. This, of
course, involved some forethought as to what data would need to be stored
and how it would be stored (i.e. database design). Frankly, this can be a
fun exercise!

e Question: if the posts are cached locally, then won’t posts that have been
deleted continue to show up on HarvardTweets? Yes, but this is inten-
tional. Twitter’s servers have a limit to how frequently they can be hit
and gathering this past data would risk surpassing this limit.

e Question: how is the site updated? Every 5 minutes or so, a cron job
executes on the server. cron is a Linux utility which allows commands
to be scheduled to run automatically. This particular cron job executes
update.php which then queries the database for a list of usernames, hits
Twitter’s servers to retrieve those users’ Tweets, and then populates the
page with them.

3 Project 2 (17:00-23:00)

e Project 2 will task you with implementing a database-driven stock-trading
website which empowers users to register as well as buy and sell (or at
least simulate buying and selling) stocks. Databases aren’t a new concept
in this course, however. We've already interacted with CSV and XML
databases.

http://tweets.cs50.net

Computer Science 75 Lecture 5: October 19, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

e On the course’s homepage is The Big Board, which is a game based on
the staff’s implementation of C$75 Finance. If you click play the BIG
BOARD, you’ll be able to test your financial savvy against the other
students in the course. How much money can you make given $10,000
(fake) dollars?

e The C$75 Finance data is retrieved from Yahoo in CSV format. You need
only make a request to Yahoo’s servers with certain parameters defined
in a GET string and you’ll be handed back data which you can then easily
parse.

o If we take a look at the CSV file that’s returned if we look up GOOG, we
see that it’s just a single row of data. This file can actually be opened in
Excel and each piece of data will display in its own column. We can, in
fact, query for multiple rows at once if we use the correct parameters in
our GET string. Let’s take a look at an example of this GET string:

quotes.csv?s=G00G&f=sl1ditlclohgv&e=.csv

Although the file is named quotes.csv, we know that there’s actually a
script running in the background. The s parameter is almost certainly the
stock symbol. The f parameter is a little more cryptic and specifies what
data we want to get back from Yahoo (see here for the unofficial definition
of tag). Finally, the e parameter specifies the file format of the data being
returned.

4 SQL (23:00-53:00, 53:00—86:00)

4.1 Interacting with Databases

e For Project 1, our database was implemented in XML and for all practical
purposes, it was static. Theoretically, the menu could’ve been changed
with a simple text editor, but if we had taken a little more time, we
might’ve been able to design a front-end interface that could’ve outputted
XML using SimpleXML. As for customers’ orders, we were content to
“store” them as e-mail. This is reasonable when there isn’t time or desire
to implement more persistent, machine-readable data storage.

e In terms of complexity, an intermediate between XML and SQL proper is
SQLite, which allows you to interact with data via SQL statements but
which is ultimately implemented in the current working directory as a
binary file. This is useful when a full-fledged SQL database would really
be overkill or when there’s a desire to package an entire application in a
single directory without the need for a database username, password, etc.

e CSV can also be used to store data persistently, although representing
complex objects and data as a series of columns and rows can often be a

http://www.cs75.net/finance
http://www.cs75.net/finance/play.php
http://www.cs75.net/finance/play.php
http://www.gummy-stuff.org/Yahoo-data.htm

Computer Science 75 Lecture 5: October 19, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

difficult task. Even relational databases have this shortcoming to a certain
extent.

e The relational database engine we will work with is MySQL. Although
there are certainly valid arguments for other engines, we will opt for
MySQL because it’s high-performing, well-documented, popular (i.e. well-
supported), and, perhaps most importantly, free. Other database engines
include PostgreSQL, SQL Server, and Oracle. For the most part, all these
database engines use the same language, SQL (structured query language),
albeit with slight variations, to interact with the underlying data.

e What is a relational database? You can think of it like an Excel spread-
sheet which has multiple worksheets, each of which represents a table in
our database. A table is simply data stored as rows and columns. Re-
lational database design boils down to deciding what columns should be
named and what data types those columns should store as well as how to
divide data among tables. You might think it would be simplest to store
all your data in a single table, but these will inevitably lead to redundancy.
For example, consider an address book stored in a relational database. If
you have a lot of friends who live in the Cambridge area, the city and state
information is going to be repeated row after row after row. The process
of normalization is meant to reduce this redundancy.

e The advantage of a SQL database over a CSV or XML database is that
the SQL database has an engine backing it up. This engine is actually a
program running and listening for connections on port 3306. Thus, data
can be retrieved more quickly because it’s not necessarily in files on the
hard drive, but may in fact already be loaded up in RAM.

e For Project 2, you are welcome and encouraged to develop on your home
computer, but realize that you won’t be able to connect remotely to
cs75.net’s database server. By default, MySQL traffic is unencrypted,
so for security purposes, we block connections on port 3306. You’ll need
to create your database on your home computer and then export it to
cs75.net.

4.1.1 Via the Command Line

e To interact with the MySQL database engine, we can run the mysql com-
mand from the command line. We’ll need to use the —u and -p to specify
our username and password in order to connect. We’'ll then be presented
with a command prompt at which we can type SQL commands. If we
type SHOW DATABASES;, being careful to end with a semicolon, the com-
mand terminator, we’ll get a list of our databases printed to stdout. Two
databases which will appear by default are information_schema, which
is best to leave alone, and test, which you can play around with. Ev-
erything else is a database which was created with the CREATE DATABASE
command.

Computer Science 75 Lecture 5: October 19, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

e If we type USE malan_lecture! followed by SHOW TABLES, we can see
all the tables for our malan_lecture database. Finally, we can type
DESCRIBE users to see a description of the users table. We’ll see that
we have two columns or fields, user and pass, both of which have a type
of VARCHAR (255), meaning they consist of a variable number of characters
up to 255. Neither of them can be NULL and the user field is a primary
key for the table, which we’ll discuss later.

e Now we can type SELECT user FROM users to retrieve a list of all the
usernames in our users table. We see that there’s only one, jharvard. If
we want to add another username malan, we could execute the following
command:

INSERT INTO users (user,pass) VALUES (‘malan’, €12345’°);

To see what effect this had on our table, we can retrieve all the rows from
our users table using the * wildcard syntax:

SELECT * FROM users;

We see that another row has been added with malan as user and 12345
as pass. We can select only this row using the following syntax:

SELECT * FROM users WHERE user=‘malan’;

As you can see, SQL is fairly accessible. If we want to filter our results,
we generally just add a predicate to our query using the WHERE keyword.

4.1.2 Via DirectAdmin and phpMyAdmin

e The command line, of course, is not the only way to interact with MySQL.
We’ll make use of a GUI named phpMyAdmin as well as a PHP inter-
face. We can also create new databases via the panel. Know that while
it’s partly just semantics, the database engine is the actual software run-
ning in the background which manages connections and actually retrieves
data whereas a database itself is a piece of memory in which the data
is stored. In our previous analogy, an Excel spreadsheet represents a
database whereas Excel itself might represent the database engine.

e To create a database on cs75.net, we’ll need to login to the panel and click
on MySQL Management followed by Create new Database. Once there,
we’ll be given the option to name a database with the prefix username_.
This is a DirectAdmin convention in order to segregate users’ databases.
On your own database server, you can name your databases whatever you
want.

IThis would be a good type to mention that SQL commands are case-insensitive (though
table names aren’t necessarily), but by convention, SQL keywords are written in all-caps.

Computer Science 75 Lecture 5: October 19, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

e Once we've created a database, we can choose to interact with it via php-
MyAdmin. Realize that the “php” in phpMyAdmin is purely coincidental:
it just happens to be implemented in a language that we’re studying exten-
sively in this course. phpMyAdmin is one of the most useful, well-designed
open-source applications out there. It takes the hassle out of interacting
with MySQL. If you forget what data types MySQL supports, for exam-
ple, you'll find a convenient dropdown menu to remind you. That being
said, the one annoying aspect of phpMyAdmin is its cookie handling. If
you leave an instance of it running for an hour or so, the session will time
out but it won’t be clear that it did and you might observe some strange
behavior. Just clear your cache or restart your browser and it should take
care of it.

e Let’s say we want to recreate the users table we saw in our malan_lecture
database. Once we click the create table link and give our table a name,
specifying that it will have two fields, we’ll be directed to a screen that
looks something like this:

Field Type @ LengthValues' Collation Attributes Null Defaul? Extra ©
VARCHAR [v)] ¥ [notnul [v vy © O O ©
VARCHAR [+ v ~| [notnull [/ ¥ O O O ©
Table comments: Storage Engine: Collation:
MyISAM v v
‘ orAdd1 |fieldts) ‘

We’ll name the fields user and pass, just like in our previous example.
And, likewise, we’ll specify the default data type, VARCHAR with a max-
imum length of 255. The VARCHAR data type only stores as many bytes
as are necessary, so as not to waste space. You pay a slight performance
penalty, as a result, however. The Collation menu has to do with char-
acter encoding—by default, it is Swedish because the original designers
of MySQL were Swedish, but for the most part you don’t need to worry
about this. Attributes is not applicable for string data types, but if we
were using an INT or a TIMESTAMP, we could tweak them here. Null spec-
ifies whether a field can have the value of NULL or not—in other words,
do we want this field to be allowed to be blank? If you specify NOT NULL,
then INSERT operations will fail if this field isn’t specified. That can be
a useful way of doing error-checking at the database layer. Default al-
lows us to specify a default value for this field. Under Extras, we find
AUTO_INCREMENT which automatically assigns the next available smallest
number—in this way, we can maintain a unique ID column without manu-
ally keeping track of the number. Next, there are a series of radio buttons
and checkboxes which allow us to specify primary keys, indexes, unique
keys, and fulltext search columns. More about those next time. Finally,
below these two field definitions, there’s a dropdown menu for Storage En-
gine. The two we’ll discuss in this course are MyISAM and InnoDB. For
now, just know that MyISAM is higher-performing, but doesn’t support

Computer Science 75 Lecture 5: October 19, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

transactions. We might also specify MEMORY as our Storage Engine if
we want all of our database to be stored in RAM. As you can guess, this
will be very fast!

e When we click Save, our table will be created and, conveniently, the SQL
syntax that was used to create it will be displayed for us. In this way, we
can use phpMyAdmin as a learning tool for SQL.

e Question: why 2557 Historical reasons and nothing more. This used to
be the default value for VARCHAR, so it’s still pretty common. Something
like 8 or 16 would probably work just as well.

e The basic list of SQL statements which can be executed are as follows:

— CREATE
ALTER
DROP

SELECT
INSERT
— UPDATE
— DELETE

e The MySQL Documentation is not nearly as user-friendly as that of PHP,
but it is quite thorough. Quite frankly, Google and the Resources page will
be your friend if you ever have questions on MySQL usage. Note that we
use version 5.0 of MySQL, although versions 5.1 and 5.4 are now available.
Mostly, this is because of DirectAdmin, which doesn’t allow installation
utilities like yum to have free reign. Also, there’s not really any features of
5.1 that you’ll need to complete your coursework. Likewise, we are using
PHP 5.1 rather than the newest version, 5.2.6.

e Database engines can speed up access to data not only by loading data into
RAM but also by optimizing tables for common operations. For example,
if a particular field in a table is one that you are likely to search on over
and over again, you can add an index to it so that the database engine
will implement something like a hash table in order to achieve constant
time lookup on that field. If you decide later that a field is one that you
will search on frequently, you can always add an index on it after the table
is created.

e Just to make clear the connection between the command line and php-
MyAdmin, the SELECT * statement is equivalent to the Browse tab and
the DESCRIBE statement is equivalent to the Structure tab for a given
table.

http://dev.mysql.com/doc/refman/5.0/en/
http://www.cs75.net/resources/

Computer Science 75 Lecture 5: October 19, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

4.1.3 Via PHP

e Taking a look at loginb.php, we see our first example of interacting with
MySQL via PHP:

<7
loginb.php

A simple login module that checks a username and password
against a MySQL table with no encryption.

David J. Malan
Computer Science E-75
Harvard Extension School

// enable sessions
session_start();

// connect to database

if (($connection =
mysql_connect("localhost", "malan_fall2009", "12345")) === FALSE)
die("Could not connect to database");

// select database
if (mysql_select_db("malan_£fall2009", $connection) === FALSE)
die("Could not select database");

// if username and password were submitted, check them
if (isset($_POST["user"]) && isset($_POST["pass"]))

// prepare SQL
$sql = sprintf ("SELECT * FROM users WHERE user=’%s’",
mysql_real_escape_string($_POST["user"]));

// execute query
$result = mysql_query($sql);
if ($result === FALSE)
die("Could not query database");

// check whether we found a row
if (mysql_num_rows($result) == 1)
{
// fetch row
$row = mysql_fetch_assoc($result);

Computer Science 75 Lecture 5: October 19, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

// check password
if ($row["pass"] == $_POST["pass"])

{
// remember that user’s logged in
$_SESSION["authenticated"] = TRUE;
// redirect user to home page, using absolute path, per
// http://us2.php.net/manual/en/function.header.php
$host = $_SERVER["HTTP_HOST"];
$path = rtrim(dirname ($_SERVER["PHP_SELF"]), "/\\");
header("Location: http://$host$path/home.php");
exit;

}

7>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Log In</title>
</head>
<body>
<form action="<?7 echo $_SERVER["PHP_SELF"]; 7>" method="post">
<table>
<tr>
<td>Username:</td>
<td>
<input name="user" type="text" /></td>
</tr>
<tr>
<td>Password:</td>
<td><input name="pass" type="password" /></td>
</tr>
<tr>
<td></td>
<td><input type="submit" value="Log In" /></td>
</tr>
</table>
</form>
</body>
</html>

10

Computer Science 75 Lecture 5: October 19, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

Here, we’re hardcoding in our database login credentials, but better prac-
tice would be to abstract them away into a separate config file. Note
that die() is not a very elegant way of informing users that an error
has occurred, but in this context, we're focusing on the interaction with
MySQL. Once we’ve connected to MySQL using the mysql_connect ()
function, we can select a database using the mysql_select_db() func-
tion. Pretty straightforward. This API is actually rather old, but the
newer ones, namely MySQLi and PDO, have a steeper learning curve. For
your final projects, feel free to use whichever API you are most comfortable
with.

e Recall the logic from weeks ago whereby if the POST variables aren’t set,
then the login page is being visited for the first time, so the form will be
displayed. If the variables are set, then we need to check them against
what’s stored in our database. To do this, we’ll prepare a SQL string using
sprintf () to fill in placeholders with values. In this case, we’ll be plugging
in the escaped username into the SQL string where the placeholder %s is.
Escaping data that is plugged into SQL queries is important to protect
against SQL injection attacks. We don’t want users to be able to insert
characters like single quotes or keywords like DELETE into our query. More
on this next time.

e Once we’ve prepared our SQL string by plugging in escaped user input,
we pass it to mysql_query(). mysql_query() will then return a result
set or MySQL resource, an object containing all the rows of data that we
asked for. We’ll then need to ask for one row at a time from this object
until it returns false, at which point we know there are no more rows left.

e First, we do a sanity check: if mysql_query() returns false, it’s probably
because of a syntax error in our SQL query. If the return value is not false,
then we’re checking if the number of rows equals 1. If the number of rows
equals 0, then the user isn’t registered. If it’s more than one, we also have
a problem. This won’t ever be the case if we’ve established username as
a primary key on our table. In the future, however, we’ll be using an INT
as the primary key on our users table.

e If the number of rows is 1 (i.e. we’ve found the user), we need to check the
password. We call mysql_fetch_assoc() to retrieve the single row from
our result set. That row will be an associative array, so we can access the
password field using bracket notation. If the password field is equal to
what the user typed in, then we log the user in by setting an index in the
$_SESSION variable. Finally, we redirect the user.

e Question: what does mysql_real_escape_string() actually do? It’s
going to escape single quotes which will prevent a malicious user from
attempting to end our SQL string and then tack on his own predicate.
More on this next week.

11

Computer Science 75 Lecture 5: October 19, 2009

Fall 2009
Scribe Notes

Andrew Sellergren

e Even here, though, we're relying on PHP to check the password for us.
Why not ask SQL to do this for us? We do just that in login6.php:

<?

YELS

* X X ¥ X X *X *

*
~

//

login6.php

A simple login module that checks a username and password
against a MySQL table with no encryption by asking for a binary answer.

David J. Malan

Computer Science E-75
Harvard Extension School

enable sessions

session_start();

//
if

//
if

//
if
{

connect to database
(($connection = mysql_connect("", "", "")) === FALSE)
die("Could not connect to database");

select database
(mysql_select_db("", $connection) === FALSE)
die("Could not select database");

if username and password were submitted, check them
(isset ($_POST["user"]) && isset($_POST["pass"]))

// prepare SQL

$sql = sprintf ("SELECT 1 FROM users WHERE user=’%s’ AND pass=’%s’",
mysql_real_escape_string($_POST["user"]),
mysql_real_escape_string($_POST["pass"]));

// execute query
$result = mysql_query($sql);
if ($result === FALSE)
die("Could not query database");

// check whether we found a row
if (mysql_num_rows($result) == 1)
{

// remember that user’s logged in
$_SESSION["authenticated"] = TRUE;

// redirect user to home page, using absolute path, per

12

Computer Science 75 Lecture 5: October 19, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

// http://us2.php.net/manual/en/function.header.php
$host = $_SERVER["HTTP_HOST"];

$path = rtrim(dirname($_SERVER["PHP_SELF"1), "/\\");
header("Location: http://$host$path/home.php");
exit;

>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Log In</title>
</head>
<body>
<form action="<? echo $_SERVER["PHP_SELF"]; 7>" method="post">
<table>
<tr>
<td>Username:</td>
<td>
<input name="user" type="text" /></td>
</tr>
<tr>
<td>Password:</td>
<td><input name="pass" type="password" /></td>
</tr>
<tr>
<td></td>
<td><input type="submit" value="Log In" /></td>
</tr>
</table>
</form>
</body>
</html>

Here, we're filtering our result set based on the user-provided username
and password. We know that if any results are returned at all (in this case,
the result will simply be the number 1), it’s because both the username
and password were matched in the database.

13

	Announcements (13:00–17:00, 53:00–56:00)
	Final Projects

	HarvardTweets (0:00–13:00)
	Project 2 (17:00–23:00)
	SQL (23:00–53:00, 53:00–86:00)
	Interacting with Databases
	Via the Command Line
	Via DirectAdmin and phpMyAdmin
	Via PHP

