
Computer Science 75
Fall 2009
Scribe Notes

Lecture 4: October 5, 2009
Andrew Sellergren

Contents

1 Announcements (0:00–2:00) 2

2 XML (2:00–110:00) 2
2.1 Introduction . 2
2.2 Presentation . 5
2.3 History . 6
2.4 Structure . 7

1

Computer Science 75
Fall 2009
Scribe Notes

Lecture 4: October 5, 2009
Andrew Sellergren

1 Announcements (0:00–2:00)

• Tonight, we have the privilege of listening to a guest lecturer, David Heit-
meyer, who teaches CSCI E-153, a entire course devoted to XML-based
web development, as well as CSCI E-12, dedicated to the fundamentals of
web development. David also works as a software engineer for iCommons.
Thanks, David, for giving us a break from listening to the other David!

2 XML (2:00–110:00)

2.1 Introduction

• XML celebrated its tenth anniversary last year, which means that while
it’s not brand new and not the latest and greatest technology, it is mature
and thus tried and true.

• XML is very similar to HTML, as we’ve already seen. Here’s a few other
properties and uses of XML:

– “self-describing” data

– interoperable (languages, platforms, applications)

∗ e.g., between Java and Python or between PCs and Macs

– content and data

∗ can be used for both data-centric and narrative purposes, e.g.
astronomical datasets and ancient manuscripts, respectively

– machine-readable

– presentation and display for people

• Let’s take a look a simple example of XML which implements an address
book:

<addressbook>
<contact>
<name>David Heitmeyer</name>
<address>8 Story Street</address>
<city>Cambridge</city>
<state>Massachusetts</state>
<zip>02138</zip>
<phone type="office">617-384-6656</phone>
<email>david_heitmeyer@harvard.edu"</email>

</contact>
<contact>
<name>Drew Gilpin Faust</name>
<address>Massachusetts Hall</address>
<city>Cambridge</city>

2

Computer Science 75
Fall 2009
Scribe Notes

Lecture 4: October 5, 2009
Andrew Sellergren

<state>Massachusetts</state>
<zip>02138</zip>
<email>president@harvard.edu</email>

</contact>
</addressbook>

As you can see, addressbook is the single root node, which is a require-
ment for well-formedness. This XML can very easily be translated into
XHTML so as to display more appropriately in a browser:

<table class="addressbook">
<tr>

<th>Name</th>
<td>David Heitmeyer</td>

</tr>
<tr>

<th>Address</th>
<td>8 Story Street
Cambridge, Massachusetts 02138
</td>

</tr>
<tr>

<th>Phone</th>
<td>617-999-5870</td>

</tr>
<tr>

<th>Email</th>
<td>david_heitmeyer@harvard.edu</td>

</tr>
<tr>

<th>Name</th>
<td>Drew Gilpin Faust</td>

</tr>
<tr>

<th>Address</th>
<td>Massachusetts Hall
Cambridge, Massachusetts 02138
</td>

</tr>
<tr>

<th>Email</th>
<td>president@harvard.edu</td>

</tr>
</table>

Although a trained programmer could easily extract the data he needs
from this XHTML, it is much easier to parse in pure XML format.

3

Computer Science 75
Fall 2009
Scribe Notes

Lecture 4: October 5, 2009
Andrew Sellergren

• Recommended reading: XML in 10 points from the W3C. To emphasize
2 of these 10 points:

– XML is a family of technologies.

This can be somewhat confusing for beginners in XML, but it will eventu-
ally be empowering as you become more comfortable with the language.

– XML is new, but not that new.

XML was actually born as a simplification of SGML (standard generalized
markup language), which was developed in the mid-1980s.

• To quote W3C: “XML isn’t always the best solution, but it is always worth
considering.”

• XML is more like a family or a galaxy of languages than a single one:

We’ve already discussed how XML can be used as Markup, either for
narrative or data-centric purposes, as well as for Presentation, whether
it be on the web or mobile devices or in print (extensible stylesheet lan-
guage formatting object (XSL-FO)). Later in the course, we’ll be talking
more about using XML for Exchange, particularly in the context of Ajax.
This Exchange can take place entirely server-side or might take place both

4

http://www.w3.org/XML/1999/XML-in-10-points

Computer Science 75
Fall 2009
Scribe Notes

Lecture 4: October 5, 2009
Andrew Sellergren

client-side and server-side. We’ve already seen that it’s possible to validate
our webpages as XHTML, which means we’ve dealt with the Definition
aspect of XML. DTDs and schemas, as well as RELAX NG and Schema-
tron, are all used to describe what elements and attributes are available
and how those elements can be nested. In terms of the Program side of
XML, XSLT (emphasis on T for transformation), defines templates which
are used to translate one XML format to another. In addition, XPath, a
subset of XQuery, is used to quickly access information in XML.

2.2 Presentation

• XML can be used to present content in a number of different formats:

– XHTML/HTML

– PDF

– Graphics

– Mobile Devices (XHTML MP, WML)

– Text

– Office (Word, Excel, RTF)

As an example, take a look at how a simple XML document describing a
course can be transformed via XSLT into multiple different presentation
formats. In each case, the presentation is being generated on the fly
according to a template which dictates how the XML document is to be
parsed. In this way, if any piece of information about the course changes,
we need only change it in the source XML in order for all the different
presentations to be updated. This way of describing a course in XML
(although it could be improved), can also be extended to courses other
than E-153.

• Weather data lends itself quite naturally to being represented in XML.
The my.harvard Portal, for example, makes use of an XML feed from
weather.com. The National Weather Service (NWS) also distributes live
data in XML format. Feel free to play around with the Massachusetts
data. Note that although this page looks highly stylized, it is still nothing
more than basic XML. If you view its source, you’ll see that the second line
defines a stylesheet which the browser is using to display it. Even without
a stylesheet specified, Firefox will display XML so that its elements are
collapsible. While convenient, this feature is not built in to XML.

• Although we won’t go into details, another interesting example of XML
used for Presentation is maps. This map, depicting the precincts of Mas-
sachusetts and which party they voted for in the Presidential Election of
2008, was created using XSLT and XPath to merge data from an SVG
map of Massachusetts and voting data from Boston.com. KML is a spe-
cific flavor of XML which is used to define placemarks and locations. We

5

http://www.cs75.net/lectures/4/src/slide7.html
http://www.cs75.net/lectures/4/src/slide7.html
http://www.weather.com
http://www.weather.gov/xml/current_obs/KBOS.xml
http://www.weather.gov/xml/current_obs/KBOS.xml
http://www.cs75.net/lectures/4/src/example_ma_2008_election/output/ma_redblue.png
http://www.cs75.net/lectures/4/src/example_ma_2008_election/output/ma_towns.svg
http://www.cs75.net/lectures/4/src/example_ma_2008_election/output/ma_towns.svg
http://www.cs75.net/lectures/4/src/example_ma_2008_election/vote_data/data.html

Computer Science 75
Fall 2009
Scribe Notes

Lecture 4: October 5, 2009
Andrew Sellergren

could pass a KML document to Google Earth or Google Maps to have it
display markers at our points of interest.

• RSS is a flavor of XML used to syndicate news articles or other informa-
tion updates. Users will access this feed using a reader which might be
standalone or web-based. The core elements of RSS feeds are the item el-
ements, which generally contain title, description, and link elements
as children. Apple uses RSS to implement Podcasts. In the enclosure
element (which is not Apple-specific), the actual media file (e.g. an MP3),
is specified. Several other elements which are Apple-specific, including
itunes:summary, itunes:keywords, and itunes:duration, extend the
RSS format. Still, a normal RSS reader will be able to understand the
Podcast. Apple’s extension of the RSS format speaks to the modularity
of XML.

• Question: XSLT would be able to process the Apple-specific elements so
long as it was made aware of them at the outset.

• Using RSS, we could also depict information like David’s Favorite Lunch
Spots on Yahoo! Maps.

• MathML offers a quick and easy way of presenting equations and for-
mulas in browsers. The less appealing alternative is TEX which is quite
cumbersome.1 In order to use MathML within HTML, we must declare
our namespaces:

<html xmlns="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML">

The first namespace declaration is standard for all HTML and is required
for it to validate. The second namespace declaration is for MathML. This
defines a prefix mml, which, when present at the start of any tag in the
document, will refer to the MathML namespace. Note that mml is a prefix
that we ourselves are specifying. We could’ve just as easily named it math,
for example. It’s not tied to the actual namespace.

2.3 History

• XML developed out of SGML, which displays tremendous flexibility. We
see this flexibility in HTML, which is a specific manifestation of SGML.
For example, some end tags are optional in HTML and attributes don’t
need to be quoted if they consist of a single word.

• This same flexibility, however, was also the undoing of SGML, given the
difficulty of writing cross-platform parsers for it. XML, then, is a simpli-
fied, stricter subset of SGML. Because it is stricter, its parsers are simpler
to write.

1Yes, I realize the irony of writing that within a LATEX document. (sigh)

6

http://www.cs75.net/lectures/4/src/slide14.html
http://www.cs75.net/lectures/4/src/slide14.html

Computer Science 75
Fall 2009
Scribe Notes

Lecture 4: October 5, 2009
Andrew Sellergren

• Question: what do you give up in using XML as opposed to SGML? Pretty
much nothing. SGML DTDs allow for defining exclusions (e.g. a certain
tag cannot be nested within another tag) whereas XML DTDs do not, but
XML Schemas can accomplish the same thing.

• XML is not a markup language in and of itself, but rather a structure for
creating markup languages, whether general ones like XHTML or more
specific ones like MathML. For a good (but not comprehensive) list of
markup languages that have evolved from XML during its history, see
Oasis Open or XML.org.

2.4 Structure

• In order for parsers to work with XML documents, the documents must
be well-formed (e.g. have open and close tags for all elements, including
empty ones; use character entities to properly escape ampersands, etc.;
have one root element; quote attributes; show proper nesting). XML
documents may or may not be valid, however.

• XML documents can very effectively be visualized as trees. So in the
example address book XML snippet we looked at earlier, addressbook is
the root, within which we have two contact elements, which are children
of addressbook and siblings of each other. Each contact element has
name, address, city, state, zip, and email child elements, each of which
is a descendant of addressbook. Conversely, contact is a parent and
addressbook is an ancestor of name, address, etc.

• Question: can you have multiple phone elements if they have different
type attributes? Actually, they don’t even need to have different type
attributes. We can have multiple phone elements within each contact
and the document will still be well-formed. We might, however, choose to
constrain that when we are defining our grammar.

• David recommends that you download an XML editor or otherwise enable
XML syntax highlighting in your favorite text editor.

• XPath is a language which allows us to quickly access information in
an XML document based on our knowledge of its structure. Recall this
snippet of XPath from last lecture:

/child::lectures/child::lecture[@number=‘0’]

From this snippet, we can make a guess at the structure of the XML:

<lectures>
<lecture number="0">

...
</lecture>

7

http://www.oasis-open.org/
http://www.xml.org

Computer Science 75
Fall 2009
Scribe Notes

Lecture 4: October 5, 2009
Andrew Sellergren

<lecture number="1">
...

</lecture>
</lectures>

The square brackets in the XPath expression comprise a predicate which
specifies that we are interested only in the lecture element whose number
attribute is 0.

• The following are all types of nodes that can appear in XML documents:

– document node

– element node

– attribute node

– text node

– comment node

– processing instruction node

– namespace node

The first four are much more common than the last three.

• Take a look at the following visualization of all the axes available via
XPath:

8

Computer Science 75
Fall 2009
Scribe Notes

Lecture 4: October 5, 2009
Andrew Sellergren

In XPath expressions, axes are specified before two colons and are sep-
arated from each other by forward slashes. In the previous snippet, for
example, we used the child axis twice. child is the default axis, so if no
axis is specified, then child is assumed. We might’ve written the example
above like so:

/lectures/lecture[@number=‘0’]

Of the downward-looking axes, there is the verb/descendant/ axis, which
includes immediate children as well as the children’s children, and so on,
as well as the descendant-or-self axis, which includes descendants and
the self node. Of the upward-looking axes, there is the parent axis, the
ancestor axis, and the ancestor-or-self axis. Other axes look left and
right, so to speak, which attests to the fact that order does matter in XML
documents (for elements, not attributes). Using the preceding-sibling
and following-sibling axes, we can access siblings of the self node.
Finally, the preceding axis, according to its informal definition, captures
all elements which have closed before the self node and the following
axis captures all elements which open after the self node.

9

Computer Science 75
Fall 2009
Scribe Notes

Lecture 4: October 5, 2009
Andrew Sellergren

• XPath expressions return sequences of nodes. You can think of them as
lists, but know that lists are slightly different from sequences, at least
conceptually.

• In predicates, when searching for specific values of attributes, be careful
to enclose strings in single quotes, lest they be confused with parts of the
XPath expression.

• Let’s take a look at some examples of XPath expressions. The following
two expressions are equivalent:

/courses/course[@acad_year = 2009][@offered = ‘Y’]
/courses/course[@acad_year = 2009 and @offered = ‘Y’]

They both return the course elements which have an acad_year attribute
value of 2009 and an offered attribute value of Y. In other words, all the
courses which are offered in the 2009 academic year.

• The following two expressions select on the attributes of role elements,
but ultimately returns a sequence of person elements, which are the par-
ents of the role elements:

/congress/person[role/@type=‘sen’]
/congress/person[role/@state=‘CA’]

• We can use XPath to query RSS feeds as well:

/rss/channel/item[position() = 1]
/rss/channel/item[position() = last()
/rss/channel/item[position() mod 2 = 0]
/rss/channel/item[position() mod 2 = 0]/title
/rss/channel/item[1]/title

Unfortunately, although its confusing, XPath numbering is 1-indexed, so
the first expression above selects the first item element. The second ex-
pression selects the last item. The third expression selects all the even
item elements. The fourth expression illustrates that predicates don’t have
to appear on the end of XPath expressions. Finally, the fifth expression
shows that 1 can be used as shorthand for position() = 1.

• Question: is it possible to find unique items within XML using XPath?
This is actually very easy using XSLT and XPath 2.0, but not so easy using
XPath 1.0. If you’re using XPath alone and not XSLT along with XPath,
you’re better off searching for unique items programmatically using PHP.

• So long as a web page is written in XHTML, we can use XPath to traverse
its DOM:

10

Computer Science 75
Fall 2009
Scribe Notes

Lecture 4: October 5, 2009
Andrew Sellergren

/html/head/title
/html/body//a[@href]

The first would select the title of the page and the second would select
all the a elements that have href attributes—in other words, all the links.
We should highlight an important but subtle syntactic difference between
the following two XPath expressions:

/html/body//a[@href]
/html/body//a/@href

The first will select all the a elements that have href attributes. The
second will select all the href attributes themselves. The predicates filter
what we’re selecting, they don’t change what we’re selecting.

• We might use XML to express classification of species by taxonomy. Take
a look at this snippet which represents the family of even-toed ungulates:

<?xml version="1.0" encoding="UTF-8"?>
<taxonomy>

<kingdom name="Animalia" common="animals">
<phylum name="Acanthocephala"/>
<phylum name="Chordata" common="cordates">

<class name="Actinopterygii"/>
<class name="Amphibia"/>
<class name="Reptilia"/>
<class name="Mammalia" common="mammals">

<order name="Afrosoricida" />
<order name="Artiodactyla" common="even-toed ungulates">

<family name="Antilocapridae">
<genus name="Antilocapra">

<species name="Antilocapra americana"/>
</genus>

</family>
<family name="Bovidae">

<genus name="Addax"/>
<genus name="Antilope"/>
<genus name="Bison"/>
<genus name="Gazella"/>
<!-- more not shown -->

</family>
<family name="Camelidae">

<genus name="Camelus" common="camels">
<species name="Camelus bactrianus"/>
<species name="Camelus dromedarius"/>

</genus>

11

Computer Science 75
Fall 2009
Scribe Notes

Lecture 4: October 5, 2009
Andrew Sellergren

<genus name="Lama">
<species name="Lama glama"/>
<species name="Lama guanicoe"/>
<species name="Lama pacos"/>

</genus>
<genus name="Vicugna">

<species name="Vicugna vicugna"/>
</genus>

</family>
<family name="Cervidae"/>
<family name="Giraffidae" common="giraffes">

<genus name="Giraffa">
<species name="Giraffa camelopardalis"/>

</genus>
<genus name="Okapia">

<species name="Okapia johnstoni"/>
</genus>

</family>
<family name="Hippopotamidae"/>
<family name="Moschidae"/>
<family name="Suidae"/>
<family name="Tayassuidae"/>
<family name="Tragulidae"/>

</order>
<order name="Carnivora" />
<order name="Cetacea" />
<order name="Chiroptera" />
<order name="Cingulata" />
<!-- more not shown -->

</class>
<!-- more not shown -->

</phylum>
<phylum name="Mollusca"/>
<!-- more not shown -->

</kingdom>
<kingdom name="Archaea"/>
<kingdom name="Bacteria"/>
<kingdom name="Chromista"/>
<kingdom name="Fungi"/>
<kingdom name="Plantae"/>
<kingdom name="Protozoa"/>
<kingdom name="Viruses"/>

</taxonomy>

Having represented this family in XML—or at least a small portion of it
which includes camels, llamas, giraffes, and okapis—we can gather some

12

Computer Science 75
Fall 2009
Scribe Notes

Lecture 4: October 5, 2009
Andrew Sellergren

interesting data using XPath. For example:

– For given species, find others in same genus

∗ Find genus, then species
//genus[species/@name=‘Lama guanico’]/species

∗ Find species with parent genus
//species[parent::genus/species/@name = ‘Lama guanicoe’]

∗ Find siblings and self
//species[@name = ‘Lama guanicoe’]/preceding-sibling::species
/taxonomy//species[@name = ‘Lama guanicoe’]
/taxonomy//species[@name = ‘Lama guanicoe’]/following-sibling::species

– Tree pruned to a specific species

/taxonomy//*[descendant-or-self::species/@name = ‘Giraffa cameloparadalis’]

In all of these examples, we end up flattening the hierarchy by querying
it using XPath. If we wish to retain the hierarchical structure, we’ll need
to use XSLT.

• In order to more specifically define the structure of an XML document,
we can use a DTD, an XML Schema, RELAX NG (RNG), or Schematron.
DTDs, unfortunately, are not intuitive in the least, but they are necessary
in certain contexts. More user-friendly are Schema and RNG, both of
which are themselves expressed in XML, have data types (i.e. specifying
that a certain node must be a date), and are namespace-aware. Schema-
tron is useful in certain contexts because it is rules-based and expressed
through XPath. For example, a site administrator might require that all
pages on a site refer to a common CSS file. This would be difficult to
accomplish in Schema and RNG, but is relatively simple to accomplish in
Schematron.

• Why should we bother with definitions and validation? In some cases,
they will make our XML documents more readable, both to machines and
to people, and more easily editable (since the definitions can provide a
guide to XML editors). In other cases, definitions and validations will not
be worth it. For example, you may want to accept whatever data you can
get from others, even if it’s not perfectly formatted. Validation is also a
costly process and is less of a concern if you trust your source (e.g. if you
produce and consume your own XML).

• Some questions you should consider when you’re designing a structure for
an XML document:

– How is XML created?

– How is XML used?

– What is the underlying data?

13

Computer Science 75
Fall 2009
Scribe Notes

Lecture 4: October 5, 2009
Andrew Sellergren

And some things you should avoid when you’re designing a structure for
an XML document:

– Unthinkingly tying to underlying model—it shouldn’t necessarily per-
fectly reflect our database structure or object model

– Over-stuffing—we don’t need an element for everything
– Pointer-heavy documents—better to leverage the hierarchy of XML

• Some recommended reading: Bad XML by Jeni Tennison.

• Some characteristics of good XML:

– custom names
– mixed content
– nesting
– attributes and elements
– untyped data
– namespaces

• When should data be stored as an attribute and when should it be stored
as an element? And when should we mix the two? For very large XML
documents which have tens of thousands of elements, storing as attributes
is about 30% faster. For PizzaML, this won’t really be a concern. Gener-
ally speaking, attributes represent metadata for the elements which rep-
resent the actual content. For example, the currency of a stock quote
would probably best be stored as an attribute since it is metadata which
describes the actual data, namely the stock quote. Lengthy text, as well
as anything that relies on ordering or will itself have children, should
probably be stored as elements.

• If we revisit the XML weather data provided by the NWS, we can begin
to make some improvements. First, for dates and times, we should use
ISO standard formats. Second, the timestamp for the observation is really
metadata, so we could store it as an attribute rather than a child element
of the root element. Third, we could switch to the geo namespace for
describing locations and attach latitude and longitude coordinates to the
location element either as attributes or child elements. Fourth, we could
add more nesting: all of the elements with the prefix wind_ could really
be represented as children of a single wind element. Fifth, units for mea-
surements could be changed to attributes. Regarding measurements that
differ only in units, we might simply create an attribute named system
that would specify English, metric, SI, or whatever system the units be-
long to. In that way, if we wanted to add temperature in Kelvin, we need
not create an entirely new element named temp_k, but rather can add an-
other instance of an element we’ve already created, namely temperature.
Another option would be to nest measurements with different units as
reading children of a single temperature parent.

14

	Announcements (0:00–2:00)
	XML (2:00–110:00)
	Introduction
	Presentation
	History
	Structure

