Computer Science 75
Fall 2009
Scribe Notes

Contents
1 Announcements (1:00—2:00)
2 More on Sessions (3:00-52:00)

3 XML (0:00-1:00, 52:00-108:00)

3.1 Introduction.
3.2 SimpleXML
33 RSSand XPath

Lecture 3: September 28, 2009
Andrew Sellergren

Computer Science 75 Lecture 3: September 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

1 Announcements (1:00-2:00)

Project 1’s specification is now available on the Projects page of the course
website. Projects, keep in mind, are designed to be tackled over the course
of several weeks. Don’t leave it all to the last minute—instead, tackle 10
hours this week, 10 the next, and so on. This project is a noticeable step
up from Project 0 in terms of difficulty.

Tonight, Sid will be introducing Project 1 and some related material if
you stick around for section. If you can’t make it, it will be recorded and
posted online.

Next week, we’ll be joined by a guest lecturer, David Heitmeyer, who
teaches CSCI E-153, a entire course devoted to XML-based web develop-
ment.

2 More on Sessions (3:00-52:00)

Recall from last time that sessions are a form of server-side data storage
which allow us as programmers to remember information associated with
a given user. Session objects are stored in serialized form in the /tmp/
directory on the server.

What is actually sent to the user is the key—the very large random number
which identifies the user. By default, the name of the cookie is PHPSESSID.

To use the preloaded data in $_SESSION, you must call the session_start()
function at the top of your file. Be careful: you need to call this function
before any output is sent to the browser. This is because it actually trig-
gers a header called Set-Cookie being sent to the browser. Your best bet
is to call it at the very top of your file.!

Sessions obviously have great value when designing login modules. Today
we’ll be looking at four different versions of a login module, all of which you
can test out here. As we’ll see, sessions allow us to maintain state despite
HTTP being a stateless protocol. That is, once the browser has made an
HTTP request and downloaded all the necessary files, the connection is
actually closed. Sessions enable data to persist between connections.

When we click the first of our four login versions, we can login using
the username jharvard (since we’ve looked at the source code) and the
password crimson. We are then redirected back to the login page which
now tells us that we are logged in. We can refresh the page and even
disconnect and reconnect our internet connection to see that the page will
continue to remember that we are logged in.

1The one exception is if you have custom objects stored in a session, in which case you
need to load your class definitions before starting the session.

http://www.cs75.net/projects/
http://www.cs75.net/lectures/3/src/login/home.php

Computer Science 75 Lecture 3: September 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

e The logic that displays this message is as follows:

<7 if ($_SESSION["authenticated"]) { 7>
You are logged in!

log out

<? } else { 7>
You are not logged in!

<7 } >

By this logic, if the authenticated index of $_SESSION is set to true, then
announce that the user is logged in. Knowing this, we can deduce that
the page which loginl.php is submitting data to must be validating the
login information somehow and then setting the authenticated index of
$_SESSION to true. Lo and behold, that’s what we find when we examine
the source code of loginl.php:

<7
loginl.php
A simple login module.

Computer Science E-75
David J. Malan

// enable sessions
session_start();

// suppress notices
ini_set("display_errors", true);
error_reporting (E_ALL ~ E_NOTICE);

// were this not a demo, these would be in some database
define("USER", "jharvard");
define("PASS", "crimson");

// if username and password were submitted, check them
if (isset($_POST["user"]) && isset($_POST["pass"]))
{
// if username and password are valid, log user in
if ($_POST["user"] == USER && $_POST["pass"] == PASS)
{
// remember that user’s logged in
$_SESSION["authenticated"] = TRUE;

Computer Science 75 Lecture 3: September 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

// redirect user to home page, using absolute path, per
// http://us2.php.net/manual/en/function.header.php
$host = $_SERVER["HTTP_HOST"];

$path = rtrim(dirname ($_SERVER["PHP_SELF"]), "/\\");
header("Location: http://$host$path/home.php");

exit;

7>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xL

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Log In</title>
</head>
<body>
<? if (count($_POST) > 0) echo "INVALID LOGIN"; 7>
<form action="<? echo $_SERVER["PHP_SELF"]; 7>" method="post">
<table>
<tr>
<td>Username:</td>
<td><input name="user" type="text" /></td>
</tr>
<tr>
<td>Password:</td>
<td><input name="pass" type="password" /></td>
</tr>
<tr>
<td></td>
<td><input type="submit" value="Log In" /></td>
</tr>
</table>
</form>
</body>
</html>

As you can see, we're validating the login credentials not against a database,
but against hard-coded values, which we’ve defined as constants, for sim-
plicity’s sake. You can also see that the form on this page is submitting
to itself. The alternative approach is of course to have this page submit
to a different page altogether. One downside of this two-page approach
is that if the user has made some sort of error in the form, chances are
all his data will be lost if he has to press the Back button to return and
resubmit. From a user experience standpoint, generally it’s ideal to do

Computer Science 75 Lecture 3: September 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

some validation on the same page so that the user’s entered data isn’t at
risk of being lost.2.

e Using the single-page approach, we have two distinct states: either the user
is visiting for the first time or he has already submitted his login data,
in which case we’ll perform some validation and possibly redirect him. If
they’ve made an error in their entered data, we can easily redisplay the
data and ask the user to correct it.

e The first conditional check in the above file is to determine if the user
arrived at this page after submitting a form or for the first time. If they’ve
arrived for the first time, then we want to simply display the XHTML
content. If they’ve submitted the form already, we want to check their
login information. We accomplish this using the function isset (), which
in this case checks whether the username and password have been defined,
as by a form submission. If this call to isset () returns false, then we know
the user is visiting for the first time.

e Notice that we’re not hard-coding in the name of the file to fill in the
action attribute of the form. Instead, we’re referencing the $_SERVER
superglobal which has an index called PHP_SELF that gives the name of
the current executing file. This is a good design decision considering that
we can change the name of the file without breaking the code. Arguably,
there’s a slight performance hit for having to access this superglobal, but
overall it’s probably worth it for portability’s sake.

e In the value attribute of the username field, we have an echo statement
which serves to prepopulate the field if the user has gotten here after
entering in a username (if his form submission was rejected due to an
error, for example).

e If we submit the form and sniff the network traffic, we can see that the ways
in which GET data and POST data are transmitted are not too different. The
POST string resembles a GET string in how it is formed (with ampersands
separating parameters). The fundamental difference is that GET strings
have an upper-bound on their length whereas POST strings are transmitted
following a Content-Length header which specifies just how many bytes
the server should be expecting.

e Question: is there a way to encrypt the password? We could do so using
JavaScript or we could encrypt the entire transaction using SSL.

e Quesiton: is it better to use POST or GET? For sending sensitive data, no
doubt it’s better to use POST to keep the data out of the URL and out of
the browser’s cache and history. For non-private data, it’s often better to
use GET so that URLs can be bookmarked.

2Even with the two-page approach, however, we can do this same-page validation using

JavaScript (although client-side validation should always be backed up with server-side vali-
dation!)

Computer Science 75 Lecture 3: September 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

e After checking if the username and password fields are not empty, we check
that the values provided by the user are equal to the hardcoded username
and password we specified as constants earlier. If they are equal, then
we want to somehow remember that the user is logged in. We do this
by setting the authenticated index. Realize that we could’ve called it
anything, but this name is at least meaningful.

e The second part of the login validation process is to redirect the user to
the homepage if he is logged in. We do this using these lines of code:

// redirect user to home page, using absolute path
// http://us2.php.net/manual/en/function.header.php
$host = $_SERVER["HTTP_HOST"];

$path = rtrim(dirname($_SERVER["PHP_SELF"1), "/\\");
header("Location: http://$host$path/home.php");
exit;

We might think about doing this the “easy” way by simply redirecting
to home . php. However, the specification for HTTP headers indicates that
the URL should be fully qualified, meaning that it includes the full domain
name and the path. These lines of code are simply using the superglobal
$_SERVER to retrieve the domain name and the path and append them to
the redirect URL.

e To logout, there are a few things we need to do, all of which are taken
care of in logout .php:

<?
/*x
* logout.php

A simple logout module for all of our login modules.

Computer Science E-75
David J. Malan

* ¥ ¥ ¥ x

*/

// enable sessions (so that we can destroy them)
session_start();

// delete cookies, if any
setcookie("user", "", time() - 3600);
setcookie("pass", "", time() - 3600);

// log user out
setcookie(session_name(), "", time() - 3600);
session_destroy();

Computer Science 75 Lecture 3: September 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

7>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xk

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Log Out</title>
</head>
<body>
<h1>You are logged out!</h1>
<h3>home</h3>
</body>
</html>

First, we enable sessions, as usual. Then we want to destroy any cookies
that have been set. We do this by setting their expiration date, the second
of the two parameters passed to setcookie (), to be a time in the past. We
do this with the default cookie specified by session_name in addition to
calling session_destroy(). Once we’ve done this, the previous contents
of $_SESSION will no longer be accessible.

e As we've already seen, prepopulating the username field is a simple matter
of an echo statement, so frankly there’s no excuse for a website not to
do this. This prepopulation of the username field is actually the only
improvement between loginl.php and login2.php.

e The third version of our login module has one extra line of code:

// save username in cookie for a week
setcookie("user", $_POST["user"], time() + 7 * 24 * 60 * 60);

This call to setcookie() comes after we set the authenticated index
of $_SESSION. Previously, all of the cookie handling was done for us by
PHP. If we want some control over what data is stored persistently on
the user’s hard drive, we can call setcookie()manually as we do here.
In this case, we're storing what the user entered into the username field.
The expiration date we set is a value in seconds from the current time. If
we do the math, we can see that this cookie will expire in a week.

e If we login using version 3 of our login module and then close and reopen
our browser, we can see that the username field will be prepopulated
with our username because it has been stored on the local filesystem in
a cookie. This value, of course, isn’t being accessed from $_POST because
we're visiting the page for the first time. Instead, we access it from the
$_COOKIE superglobal:

value="<? echo ($_POST["user"]) ? $_POST["user"] : $_COOKIE["user"]; 7>"

Computer Science 75 Lecture 3: September 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

Here, we're setting the value attribute of the username field using a
ternary operator (i.e. ? : can be translated to if-else). What we’re saying
is, fill it in with the value from $_POST, if it exists, otherwise fill it in
with the value from $_COOKIE. If the value in $_POST exists, it’s because
the user has submitted the form to get there, so we want to use the most
recent value that he entered. Otherwise, if it’s not set, then he’s visiting
the page for the first time, so use the value stored in the cookie.

e Notice that at the top of these files we've been making a call to the func-
tion error_reporting() to suppress notices. Generally speaking, this is
a security measure so that if your website’s code breaks, you don’t inad-
vertently give away information to a user as to how they might exploit
your website. In our case, we’re doing so because we are accessing in cer-
tain places variables which we aren’t sure are actually set. If they aren’t
set, this will produce a notice that will interfere with our program. If we
enable notices and clear our cookies, we can see that the username field
will be populated with a PHP notice because its default value, a reference
to $_COOKIE, isn’t set. Another way to suppress this notice besides a call
to error_reporting() is to place the @ symbol in front of the line of code.

e The three levels of errors in PHP are notices, warnings, and errors. Notices
and warnings, which are simply informational, are less severe than errors,
which will actually halt execution of your program.

e When writing library code, calling error_reporting() is not the best ap-
proach since there’s no guarantee that you’ll be able to control this setting
on other servers. Note that the argument we provide to error_reporting()
is two bit flags combined with the XOR operator (~). If you have no idea
what that means, don’t worry about it!

e Version 4 of the login module exhibits a security vulnerability. It stores
not only the username but also the password in a cookie. Anyone who
knows this would be able to poke around on the local filesystem and find
the stored password, since it’s unencrypted.

e Question: are name collisions with cookies possible? Within the same
domain, yes. Cookies are associated with domain names, so the fact that
all your domains live on our server is not a problem.

e Question: how easy is it to forge a session ID? No need to forge it, you can
simply hijack a valid one by sniffing network traffic on a public internet
connection. This is assuming, of course, that the connection is non-SSL.

3 XML (0:00-1:00, 52:00—108:00)

3.1 Introduction

e We begin our exploration of XML with a look at the course’s own website,
which itself uses XML files as a way of separating data from aesthetics.

Computer Science 75 Lecture 3: September 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

e Basically, what we found is that writing a few lines of code to parse these
XML files was easier than manually editing the website’s XHTML every
time we needed to update it.

e Notice that we have XML files for sections, lectures, resources, software.
These are all stored in the /etc/xml/ directory, although that’s not really
important.

e In the lectures.xml file, we see that there is a <lectures> tag at the
top, within which there are individual <lecture> tags. Each of these
lecture tags has several elements of its own, namely <title>, <dates>,
and <resources>. Basically, long story short, this is a way of representing
the data in an organized, human-readable, and machine-readable way.

e Three Aces’ menu, which you’ll be tasked with representing in XML for-
mat, is quite complicated. Of course, we don’t want this to be an exercise
in tedium, so you won’t have to implement every single item on the menu,
but only a representative subset—three or more items from each category.
Because of the corner cases, you’ll need to make some design decisions
which allow your schema to be flexible.

e The mechanism by which you implement the online ordering system is
primarily up to you. You have at your disposal, of course, HTML forms
which will allow you to collect user input.

e Think of XML as being much like XHTML, except there’s no fixed set of
tags which you can use. The number and types of tags are up to you!

e There are languages like XML Schema and DTD which allow you to define
what your XML has to look like in order to establish consistency. But
we’re not going to worry about that in this course.

Computer Science 75 Lecture 3: September 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

—
<ORDER>
<S0LD-T0> e

<PERSON ID="123">
<LASTNAME>Malan</LASTNAME>
<FIRSTNAME>David</FIRSTNAME>

</PERSON>
<SOLD- DN>20050621</50LD ON=>

<PRICE>29.95</PRICE>
<BOOK>
<TITLE>Harry Potter and the

x Order of the Phoenix</TITLE>

I child element I

<AUTHOR>J.K. Rowling</AUTHOR>
</BOOK>

< /ORDER>

e This snippet of XML seems to represent some kind of purchase order,
perhaps from Amazon. Amazon, as you've probably noticed, sells a lot
of merchandise on behalf of third-party vendors. How might it transmit
data to them about purchases? Well, one way it might do so is using
XML, which is a great language for standardizing data since it’s so easy
to parse. Because so much useful metadata is stored along with the ac-
tual data, XML is excellent for creating configuration files and file format
specifications, for example.

e In the above example, ORDER represents the root element of the document,
because it contains everything within it. Elements must be opened and
closed with tags. Unlike XHTML, XML need not be all lowercase although
its case must be consistent.

e SOLD-TO is called a child of ORDER because it is nested within it. Its
indentation isn’t necessary for the XML to be valid, but it helps for human
readability.

e Attributes should be familiar to you from XHTML. They are specified
within angle brackets of the open tag and their values must be enclosed
in quotation marks.

e XML stands for extensible mark-up language. “Mark-up” signifies that it
is not a language which executes any statements. “Extensible” signifies
that features can be added to it without breaking existing applications that
rely on it. In our example, above, we could add INITIAL and ADDRESS tags
within the PERSON tag with minimal or no effect to programs designed for
the previous version of our XML. One other selling point of XML is its
human readability.

10

Computer Science 75 Lecture 3: September 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

e Although it might seem like a waste of bandwidth and bytes to transmit
all this data across the wire, consider that it’s probably worth it to save
resources in having to parse a proprietary, albeit smaller, file format.

e Let’s take a look at a slightly more complicated XML file:

<?xml version="1.0" encoding="UTF-8"7>

<!-- This is an XML document that describes students -->
<students>
<student id="0001">
<name>Jim Bob</name>
<status>graduate</status>
<dorm/>
<major>Computer Science & Music</major>
<description>
<! [CDATA[<h1>Jim Bob!</h1>
Hi my name is jim. I look like
 11>
</description>
</student>
<student id="0002">

</student>
</students>

This is a student database of sorts, represented in XML. XML is useful in
this context if the database only has a few hundred students or perhaps if
a much larger database needs to be dumped into a more universal format
that could be read by another system.

e Notice this first line of code:
<?xml version="1.0" encoding="UTF-8"7>

This is the XML declaration, which is optional. Unfortunately, it begins
and ends with PHP short tags, which we’ll confuse the PHP interpreter
in some cases. For that reason, some find it best to leave it out. When
included, though, the XML declaration simply says “Hi, I'm an XML
document!” Note that it needs to be at the very top and the very left
of a document in order to be treated properly by an XML parser. The
encoding attribute simply specifies a standard for representing letters and
other special characters with numbers. UTF-8 is a superset of ASCII.

e The convention of XML is for everything to be surrounded by the open
and close tags of a single root element. In this case, it’s the <students>
tag. Beneath that root element, you can have as many children as you
want.

11

Computer Science 75 Lecture 3: September 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

e Elements must begin with an open tag and end with a close tag. Within
the open tag, attributes can be specified. Multiple attributes must be
separated from each other by at least one space and must have unique
names for a single element.

e Question: “Jim Bob” is a text node as we’ll see in a little while.

e Question: although id and name are token attributes, the only way to
ensure unique values for id among different elements is manually using
your program which actually writes the XML.

e One final gotcha regarding element names: they must start with letter
or underscore and contain only letters, numbers, hyphens, periods, and
underscores.

e Below are several content models for XML you should be aware of:

Element Content

<student>
<status>...</status>
</student>

Parsed Character Data (a.k.a. PCDATA, Text)

<name>Jim Bob</name>

Mixed Content
<name>Jim <initial>J</initial>Bob</name>
— No Content

<dorm />

e The <! [CDATA[and 11> tags denote character data. This tells the parser
to gobble up everything between these tags but not to parse it. This is
useful so that you can embed XHTML within XML without confusing the
parser. Unlike CDATA, PCDATA is parsed.

e Mixed content we’ve seen in the context of XHTML in which p, b, and i
tags are used within other tags to create paragraphs, bold text, and italic
text, respectively.

e What about the <dorm /> tag? This is a so-called empty element. This
is useful in the case that you want to convey that you didn’t forget the
dorm data, but merely that it was absent or missing in this particular
case. We've seen empty elements in XHTML already, the most familiar
being the
 tag. Note: some browsers still choke on
 so it’s
best to include the extra space, like so:
.

12

Computer Science 75 Lecture 3: September 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

e Question: can you constrain what attributes and elements are allowed in
an XML document? Yes, using an XML Schema or DTD which are read
by the parser. Both of these are beyond the scope of this course, however.

e Some constraints on attributes:

— Name

* Must start with letter or underscore and can contain only letters,
numbers, hyphens, periods, and underscores

— Value

* Can be of several types, but is almost always a string
* Must be quoted
* Cannot contain < or & (by itself)

e Most of XML data is of the type PCDATA, which has the following con-
straints:
— Text that appears as the content of an element
— Can reference entities
— Cannot contain < or & (by itself)

e Entities are another useful construct of XML which are familiar from
HTML:

— Used to “escape” content or include content that is hard to enter or
repeated frequently, somewhat like macros

Five pre-defined entities & < > ' "

— Character entities can refer to a single character by unicode number,
e.g., © is (©

Must be declared to be legal, e.g. <'ENTITY nbsp" ">

— Cannot refer to themselves

e We’ve seen CDATA in the context of embedding JavaScript within XHTML
to prevent the XHTML parser from getting confused:

<html>

<body>

<script type="text/javascript">
// <![CDATA[

if (x < 3)
document.write("x is less than 3!");

/7 11>
</script>

</body>
</html>

13

Computer Science 75 Lecture 3: September 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

The CDATA tags tell the XHTML parser not to interpret what’s enclosed
as XHTML. The // tells JavaScript not to interpret the CDATA tags as
JavaScript. Ugly, but it works.

e Some properties of CDATA:

— Parsed in “one chunk” by the XML parser
— Data within is not checked for subelements, entities, etc.

— Allows you to include badly formed markup or character data that
would cause a problem during parsing, e.g. including HTML tags in
an XML document

e Asin XHTML and PHP, comments are possible within XML:

— Can include any text inside a comment to make it easier for human
readers to understand your document

Generally not available to applications reading the document
— Always begin with <!-- and end with -->

— Cannot contain -- (thus they can’t be nested)

3.2 SimpleXML

e So how do we interact with this XML, particularly using PHP? Turns out
that recent versions of PHP come with an API called SimpleXML which
allows just that.

e Before we dive into SimpleXML, let’s start by constructing an XML doc-
ument to represent lectures in this course:

<lectures>
<lecture number="2">
<title>PHP, Continued</title>
<date>21 September 2009</date>
<resources>
<resource name="Slides" href="2/lectures.pdf"/>
<resource name="Source Code" href="2/src/"/>

</resources>

</lecture>

<lecture number="3">
<title>XML</title>
<date>28 September 2009</date>
<resources>

<resource name="Slides" href="3/lectures.pdf"/>
<resource name="Source Code" href="3/src/"/>
</resources>
</lecture>
</lectures>

14

Computer Science 75
Fall 2009
Scribe Notes

Lecture 3: September 28, 2009
Andrew Sellergren

Even in this basic XML document, we’ve made some significant design
decisions. Why should title be an element while number is an attribute?
Instinctively, we know that elements can be extended later to have their
own children, whereas attributes cannot. You might think of elements as
nouns and attributes as adjectives. In short, it’s open to interpretation,
but know that attributes are sometimes more easily accessible in a variety
of programming languages.

Question: id is generally best as an attribute, although the specification
for RSS includes a field called guid, which is an element. You could make
good arguments for both.

Question: generally, it’s a good idea to have identical structure among
like-named elements. Otherwise, you would defeat the purpose of XML,
which is to define a data structure which can be easily understood.

Know that when you view an XML file in Firefox, it will be pretty-printed
and displayed with collapsible elements. This is not a feature of the XML
itself, but rather a visualization bundled with Firefox. item The world of
XML effectively revolves around something called the Document Object
Model (DOM). This is the very tree structure we alluded to earlier:

<!-- smaller, simpler document --> Document
<gtudents> F““J“W
<student id="1">
<name>Jim Bob< /name) Comment Element: students
<status>graduate</status>
</student> L Y v
</students> | [
Text 'nit Element: student [—# |Atrid Text:'n
¥ ¥ ¥ k4 ¥
Text: \nitit Element: name Text: \nifit Element status Test: Init
Text: Jim Bob Text: graduate

In this diagram, each of the child elements is shown hierarchically below
its parent. At the very top is the element from which all others stem—the
document element. This is to be distinguished from the root element,
however, which is students in this case. The document element is useful
particularly in this context because it allows us to represent students as
well as the introductory comment as siblings.

15

Computer Science 75 Lecture 3: September 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

What’s the deal with the other elements besides students and student?
Technically, although whitespace is ignored by us as humans and by the
parser as well, we should include it in our DOM to be precise. So “\n\t”
is listed as a sibling of student, for example.

Why is the id attribute on the same level as the node it describes? Since
it’s not a child, it doesn’t really make sense to show it beneath its element.

Conceptually, what SimpleXML is going to do is take a document like
that on the left and hand us a hierarchical structure like that on the right.

Let’s start manipulating our sample XML document using SimpleXML:

<?

// parse XML file

$xml = new SimpleXMLElement(file_get_contents("lectures.xml"));
>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmli-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Lectures</title>
</head>
<body>
<pre>
<? print_r($xml); 7>
</pre>
</body>
</html>

SimpleXMLElement is a class which comes built in to PHP. To instantiate a
new object of this type, we use the new keyword and call the constructor,
a function which has the same name as the class itself. In the case of
SimpleXMLElement, we need to pass in a string which contains a well-
formed XML document. To convert our XML document to a string, we’ll
use the file_get_contents() function.

e Just to make sure we’ve loaded the file up properly, let’s try dumping the
contents of $xml using the print_r() function. When we do so, we get
the following output to our browser:

SimpleXMLElement Object
[lecture] => Array

(

16

Computer Science 75 Lecture 3: September 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

[0] => SimpleXMLElement Object

(
[@attributes] => Array
(
[number] => 2
)
[title] => PHP, Continued
[date] => 21 September 2009
[resources] => SimpleXMLElement Object
(
[resource] => Array
(
[0] => SimpleXMLElement Object
(
[@attributes] => Array
(
[name] => Slides
[href] => 2/lectures.pdf
)
)
[1] => SimpleXMLElement Object
(
[@attributes] => Array
(
[name] => Source Code
[href] => 2/src/
)
)
)
)
)
[1] => SimpleXMLElement Object
(
[@attributes] => Array
(
[number] => 3
)

17

Computer Science 75 Lecture 3: September 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

[title] => XML
[date] => 28 September 2009
[resources] => SimpleXMLElement Object

(
[resource] => Array
(
[0] => SimpleXMLElement Object
(
[@attributes] => Array
(
[name] => Slides
[href] => 3/lectures.pdf
)
)
[1] => SimpleXMLElement Object
(
[@attributes] => Array
(
[name] => Source Code
[href] => 3/src/
)
)
)
)

Whew, that’s a lot. But notice the indentation, which seems to suggest a
hierarchical tree structure.

e Let’s try printing out just the titles of the lectures:

foreach($xml->lecture as $lecture)

{

echo $lecture["number"];
echo "
";

18

Computer Science 75 Lecture 3: September 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

Not too impressive, but if we run this, we get the numbers 2 and 3 out-
putted to the browser. Notice that we can get an array of all the lecture
tags that are children of the root element using the -> operator. Then we
can access the attributes of a given element using bracket notation.

e Next, let’s print out the titles of the lectures, as well:

foreach($xml->lecture as $lecture)

{
echo "Lecture ". $lecture["number"];
echo "
";
echo $lecture["title"];
echo "
";
echo "
";
}

Oops, this didn’t work because title is not an attribute, but rather an
element. Let’s try this instead:

foreach($xml->lecture as $lecture)

{
echo "";
echo "Lecture ". $lecture["number"];
echo "";
echo "
";
echo $lecture->title;
echo "
";
echo "
";
}

Now let’s get a little fancier by printing out the lecture resources as an
unordered list:

foreach($xml->lecture as $lecture)

{
echo "";
echo "Lecture ". $lecture["number"];
echo "";

echo "
";
echo $lecture->title;

echo "";
foreach ($lecture->resources->resource as $resource)

{
echo "<1i>";
echo "";

19

Computer Science 75 Lecture 3: September 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

3.3

echo $resource["name"];
echo "";
echo "</1i>";

}

echo "";

3

Here, we're printing out a list of the resources for each lecture and linking
to them using the href attribute. Remember that the curly braces are
necessary so that a value within an array can be interpolated properly
between double quotes.

For those less comfortable with object-oriented programming (OOP), there
exists a function called simplexml_load_file which achieves the same as
the constructor.

RSS and XPath

One real-world application that employs this kind of XML parsing is Har-
vardEvents, created by David. This leverages the universal standard for
RSS feeds (which are implemented as XML) to aggregate event announce-
ments from groups all over Harvard’s campus. The XML specification
happens to also live on Harvard’s campus. Check out this skeleton of an
RSS feed:

<rssversion="2.0">
<channel>
<title></title>
<description></description>
<1link></1link>
<item>
<guid></guid>
<title></title>
<1ink></link>
<description></description>
<category></category>
<pubDate></pubDate>
</item>
[...]
</channel>
</rss>

Each channel belongs to a single organization, e.g. The Crimson, and each
item is one of many articles announced by that organization. Creating
HarvardEvents was a simple matter of collecting all the URLSs of the RSS
feeds and then parsing those feeds using the SimpleXML API.

20

http://events.college.harvard.edu/
http://events.college.harvard.edu/
http://cyber.law.harvard.edu/rss/rss.html

Computer Science 75 Lecture 3: September 28, 2009
Fall 2009 Andrew Sellergren
Scribe Notes

e XPath is a language that allows us to query XML. Let’s learn by way of
example. Instead of using the foreach syntax to get at the lecture tags,
we can use XPath:

<?
$lectures = $xml->xpath("/lectures/lecture[@number=2]");
>

This particular XPath query will actually return an array, but because

we’ve specified the number attribute as 2, the array will only have a single
element which corresponds to lecture 2. More on XPath next week!

21

	Announcements (1:00–2:00)
	More on Sessions (3:00–52:00)
	XML (0:00–1:00, 52:00–108:00)
	Introduction
	SimpleXML
	RSS and XPath

