
Computer Science 75
Fall 2009
Scribe Notes

Lecture 10: November 23, 2009
Andrew Sellergren

Contents

1 Announcements (0:00–2:00) 2

2 The HarvardFood API: Underneath the Hood (2:00–61:00) 2
2.1 Examining the Data . 2
2.2 Extracting the Data . 3
2.3 Using the Data . 8

3 Shuttleboy: Adding Ajax (61:00–95:00) 9

1

Computer Science 75
Fall 2009
Scribe Notes

Lecture 10: November 23, 2009
Andrew Sellergren

1 Announcements (0:00–2:00)

• David is once again a walking advertisement for his other class, CS 50.

• As promised, David fixed his hack in Shuttleboy so that it now uses Ajax!

2 The HarvardFood API: Underneath the Hood (2:00–61:00)

2.1 Examining the Data

• We spoke last time on a high level about the HarvardFood API. Of course,
food.cs50.net isn’t much of an API, but rather an explanation of how
the data is gathered from the Harvard University Dining Services (HUDS)
menu. David managed to find several other universities who use the same
third-party service to display their menu, but he found no indication that
there was a standard XML file or other data source that he might directly
interface with. So he turned his attention to screen-scraping. Today, we’ll
actually be looking underneath the hood at the PHP code that accom-
plishes this screen-scraping which, perhaps surprisingly, is less than 100
lines long. We’ll be using some XPath and XML, including a detail of
XML which we previously glossed over: namespaces.

• The purpose of this exercise is not to make you more familiar with the
HUDS menu in particular, but rather to make you more familiar with
external data sources in general: how to interface with them and reverse
engineer them.

• One of our first discoveries from last time was that the HUDS menu page
took a number of parameters, including date, type, and meal. as input
via a GET string. This is great news for us since it makes it easy for us to
replicate. date is pretty self-explanatory, type seems to return the whole
menu if 30 is specified, and meal represents breakfast, lunch, and dinner
as 0, 1, and 2, respectively. David found all this out with a little trial and
error. He then made an arbitrary (but reasonable) design decision to query
once a day for all the meals for the following week. This would open up
some interesting possiblilties: for example, the ability to know on Monday
when pizza would next to be served that week. With some more trial and
error, he found that it was indeed possible to query a week in advance and
even a little farther. Beyond that, HUDS’s data isn’t published, so David
realized he would need to run a cron job so that he could automate the
data collection in the future.

• If we return to the current day, we can begin to think about what data on
the site is actually of interest to us. Obviously, the menu items. There’s
also nutritional information and portion sizes, but David made the as-
sumption that those would be using this API would only care about what
and when, not how much and how healthy. So for now we’ll focus only on
the menu items.

2

http://www.cafepress.com/cs50
http://www.foodpro.huds.harvard.edu/foodpro/menu_items.asp

Computer Science 75
Fall 2009
Scribe Notes

Lecture 10: November 23, 2009
Andrew Sellergren

• To examine the actual data, we begin by right clicking on a menu item and
selecting Inspect Element, a Firebug option. This will open the Firebug
window and take us immediately to the DOM node that we highlighted.
As we noticed last time, this DOM node is an a element inside a span
element inside a div which has a class value of item_wrap. This is all
useful information for distinguishing the item from the rest of the content
on the page. If we scroll down or choose Inspect Element for any other
items, we see that this pattern seems to be repeated. Of course, if this
pattern were ever to change, all of our code would break.

• Question: as a sidenote, David’s investigation (specifically his observation
of the subdomain for the HUDS menu) led him to Google around and
find that FoodPro serves a number of other universities. Unfortunately, it
didn’t help him much in gaining direct access to a data source.

• After identifying a standardized tree structure, David was as excited as a
tick on a fat dog.1 However, he was soon befuddled to find that the HUDS
menu was not valid XHTML. Thankfully, with Tidy available to fix these
validation errors, David was able to rejuvenate his hopes of screen-scraping
by traversing the DOM. Regular expressions are always a possibility for
gathering data, but in this case they would’ve been quite complicated and
tedious.

2.2 Extracting the Data

• So if we want to write a PHP script which will use XPath to traverse
the DOM of the HUDS menu page, we’lll probably begin by including a
configuration file with constants (since we’ll eventually be connecting to
a database) and possibly handling some command-line arguments. Al-
though the script will be automated, we may want the option of running
it manually with hardcoded inputs in order to debug. To accomplish this,
we’ll check to see if command-line arguments have been provided. If they
have, we’ll set the start and end dates to their values using a function
named strtotime which converts strings in numerous different formats
into date objects.2 If no command-line arguments have been provided,
then by default the start date will be the current date and the end date
will be the end of the week:

$sd = (@$argv[1]) ? getdate(strtotime($argv[1])) : getdate();
$ed = (@$argv[2]) ? sd : getdate(strtotime("+6 days", $sd[1]);

The ? : syntax is a ternary operator which is shorthand for if-then-else.

• Now we need to loop over the seven days:
1Yeah, I’m from the South, how’d you know?
2This will be useful because Harvard dining halls serve brunch on Sundays, so we need to

be able to check if the current day is Sunday.

3

http://www.foodpro.com/FPNews.htm
http://tidy.sourceforge.net/

Computer Science 75
Fall 2009
Scribe Notes

Lecture 10: November 23, 2009
Andrew Sellergren

for ($date = $sd; $date[0] <= $ed[0];
$date = getdate(strtotime("+1 day", $date[0])))

{
...
}

Notice we’re using the getdate function to increment one day at a time
so we don’t have to worry about months and leap years and such.

• Within the loop, our first step is to convert today’s date into two different
formats, one to pass to the HUDS page as a GET parameter and one to
store in our database:

// get today’s date in M-D-YYYY format
$njY= date("n-j-Y", $date[0]);

// get today’s date in YYYY-MM-DD format
$Ymd = date("Y-m-d", $date[0]);

• In an array, we’ll store the different types of meals, accounting for Sundays
when only brunch and dinner are served:

// determine meals
$meals = ($date["wday"] == 0) ? array("Brunch", "Dinner")

: array("Breakfast", "Lunch", "Dinner");

We’ll then loop through the meals using a foreach statement.

• Our first order of business within the loop is to convert the menu to valid
XHTML:

// fetch meal’s menu
if (!($tidy = tidy_parse_file("http://www.foodpro.huds.harvard.edu/foodpro/" .

"menu_items.asp?date={$njY}&type=30&meal={$i}",
array("numeric-entities" => true, "output-xhtml" => true))))

continue;

// convert menu to XHTML
$tidy->cleanRepair();
$xhtml = (string) $tidy;

We’re passing the menu page to Tidy along with an array which we use
to specify a variable number of configuration options, one of which tells
Tidy to output XHTML. We’ll save this XHTML in a variable named
$xhtml after explicitly casting it to a string (since Tidy actually returns
an object). The numeric_entities specifies that we don’t use HTML
entities (since they’re not valid in pure XML) but rather their numeric
equivalents.

4

Computer Science 75
Fall 2009
Scribe Notes

Lecture 10: November 23, 2009
Andrew Sellergren

• Question: Tidy does not come pre-installed on most Linux systems, but
it’s generally fairly easy to install. You can use an installer utility like
yum or apt-get. In the case of cs75.net, we have our hands tied a little
bit by DirectAdmin: when we need to install a new feature, we have to
recompile PHP from source (which is a pain).

• As we begin the process of actually traversing the DOM, we need to step
back for a moment to discuss XML namespaces. This whole semester,
we’ve been taking for granted the xmlns attribute for the html element:

<html xmlns="http://www.w3.org/1999/xhtml">

xmlns stands for XML namespace and is specified by a URL. In program-
ming, a namespace generally means a set of variables which are defined
only for a specific context. This ensures that if there exists a separate
namespace which has identically named variables, the two namespaces
won’t collide with each other. Here we’re specifying the XHTML names-
pace. That means we can go on to use namespaces that have elements
with names like title and not worry about collisions.3 The URL value
actually does nothing except to specify uniqueness. We can come up with
our own namespace and specify our own domain name here since presum-
ably no one else in the world will have that domain. We wouldn’t use
the xmlns attribute, however, but rather an attribute like xmlns:malan,
where malan is then the prefix we’ll have to use for all of our tags.

So after all this talk of namespaces, we finally get to another line of code:

// parse XHTML
$dom = simplexml_load_string($xhtml);

// register XHTML namespace
$dom->registerXPathNamespace("xhtml", "http://www.w3.org/1999/xhtml");

As we’ve seen before, we’re loading up the XHTML string into a DOM
with the SimpleXML package. Within that package, we’re registering a
namespace which we’re going specify as xhtml. We could’ve put anything
as this first argument, so long as we then used it in our XPath queries
consistently, but just for clarity we’ll call it xhtml.

• In our XPath query, we’ll use xhtml as a prefix:

// get menu’s TRs
$trs = $dom->xpath("//xhtml:form[@id=‘report_form’]/xhtml:table/xhtml:tr");

Since all the items are nested within rows of an HTML table, we’re going
to query for the tr elements first. We could’ve specified every piece of the

3So long as we use the correct syntax for prefixing tags.

5

Computer Science 75
Fall 2009
Scribe Notes

Lecture 10: November 23, 2009
Andrew Sellergren

hierarchy starting with html, but we’ve chosen instead to search all of the
DOM nodes by beginning our query with //. The form’s id value and
the rest of this query were discovered just by examining the source code
of the HUDS menu using Firebug. Just trial and error.

• The next few lines of code, which handle the uneven division of items into
categories, we’re going to skip over. It’s not very interesting to examine.

• Turns out that using XPath to query for the tr elements was a good
approach because each tr element encapsulates only one menu item even
though it’s nested within several other elements. So to retrieve that menu
item, we write:

// get item
$a = $tr->td->div->span->a;
if (!($item = trim($a)))

continue;

Our quick sanity check handles the few cases where we have blank rows in
our table. Once we have our a element, we can grab its href attribute and,
more specifically, a parameter within it named recipe which we surmise
is a unique identifier for each menu item:

// determine recipe
if (!preg_match("/recipe=(\d+)/", $a["href"], $matches))

continue;
$recipe = $matches[1];

This regular expression searches for recipe= and then uses parentheses to
capture one or more digits within a variable named $matches. Previously,
we were using regular expressions to match, which would return a boolean,
but here we’re using regular expressions to extract, which returns the
matching string. $matches by default is an array, but the 1-index of that
array will gives us the first match.

• Because we have surmised that the recipe parameter is a unique identifier
for menu items, we’re going to build a database table of menu items using
it as a primary key. So once we’ve extracted a menu item, we’ll insert it
into that table:

// INSERT INTO into items
$sql = sprintf("INSERT IGNORE INTO items (recipe, item) VALUES(’%s’, ’%s’)",

mysql_real_escape_string($recipe),
mysql_real_escape_string($item));

mysql_query($sql);

6

Computer Science 75
Fall 2009
Scribe Notes

Lecture 10: November 23, 2009
Andrew Sellergren

We’re escaping just in case HUDS’s data has some dangerous SQL key-
words in there. The IGNORE keyword tells MySQL to fail silently (i.e.
without any warnings) when trying to insert an item with a duplicate
recipe number. We could’ve used a SELECT query to find out if the item
already existed, but this takes care of everything in a single query, which
is ideal.

• Let’s talk database design. What data type should our recipe column
be? We could make it an INT, but what if there are leading zeroes? You
might’ve run into this problem with Project 3—leading zeroes will be
truncated for INT columns. So instead, we’ll probably opt for a CHAR(6)
data type. We’re taking a bit of a chance in assuming that it will never be
longer than 6 characters, but we could hedge our bets and use a VARCHAR
if we really wanted to. As we said before, we’re also going to make the
assumption that recipe is a unique identifier, so we can specify it as a
primary key so as to constrain our data and optimize searches.

• Next to each menu item, you may have noticed two small GIFs. These
identify the items as part of a subset like “Organic” or “Vegan.” If we use
Inspect Element on these GIFs, we see that they are img elements which
are slightly farther up the hierarchy. So we can use XPath to step up a
few levels and grab these too:

// INSERT INTO legend
$a->registerXPathNamespace("xhtml", "http://www.w3.org/1999/xhtml");
foreach ($a->xpath("../../xhtml:img") as $img)
{

$sql = sprintf("INSERT IGNORE INTO legend (recipe, ‘key‘) VALUES(’%s’, ’%s’)",
mysql_real_escape_string($recipe),
mysql_real_escape_string($img["alt"]));

mysql_query($sql);
}

What we’re actually grabbing is the alt text, which is the human-readable
subset name like “Organic” or “Vegan.”

• Why have we factored out the legend table? In our database design, we
want to avoid repeating data as much as possible. Given that some items
have two subset names associated with them, if we placed the subset name
next to the item in our menu table, we would have to repeat the entire
row twice. If we have a separate table, we are still repeating a row, but
each row only contains two columns. Our menu table contains many more
columns that we would have to repeat.

For the same reason, we don’t keep the item name as a column in menu
because it corresponds one-to-one to the recipe column, which is already
unique.

7

Computer Science 75
Fall 2009
Scribe Notes

Lecture 10: November 23, 2009
Andrew Sellergren

Another solution would have been to add several more columns as flags
for each category. But then each time a category is added, we have to add
another column to our table. At some point, too many columns will make
a table unwieldy.

One assumption of the legend table is that a given recipe will not be
removed from a given category. This is reasonable, though, as it seems
unlikely that meat will be added to a Vegetarian dish without the “recipe”
being changed.

• Why have we not factored out the category? David hypothesized that
some items will have different category values at different times. Al-
though he could’ve normalized the database even further, he wanted to
avoid over-engineering the data to the point where he would risk breaking
his model at some point based on a faulty assumption. Not to mention,
this approach is more human-readable. In the case of the course web-
site, for example, the current version factors out students’ names and
usernames and replaces them with an INT. When examining the data in
phpMyAdmin, this becomes a huge pain since it’s unclear which INT cor-
responds to which student. In the next version of the site, username will
be the unique identifier.

• Finally, we insert into our menu table:

// INSERT INTO menu
$sql = sprintf("INSERT INTO menu (date, meal, category, recipe)"

"VALUES(’%s’, ’%s’, ’%s’, ’%s’)",
mysql_real_escape_string($Ymd),
mysql_real_escape_string($meals[$i]),
mysql_real_escape_string($category),
mysql_real_escape_string($recipe));

mysql_query($sql);

At the end of our loop, we’ll make a call to sleep so that we avoid pound-
ing HUDS’s server. Twenty-one queries in the span of a a few seconds,
though, really isn’t that bad.

• Question: to avoid duplicates, recipe and key are together defined as
UNIQUE on the legend table.

2.3 Using the Data

• Now, if we follow the guidelines of the API, we can access the data in a
more machine-friendly way. For example, if we request the data in JSON
format, we might get something like the below:

[
{

8

Computer Science 75
Fall 2009
Scribe Notes

Lecture 10: November 23, 2009
Andrew Sellergren

"date":"2009-11-11",
"meal":"Breakfast",
"category":"BREAKFAST BAKERY",
"recipe":"213012",
"item":"Aesops Bagels",
"Vegetarian":true,
"Vegan":false,
"Mollie Katzen":false,
"Local":false,
"Organic":false

},
{

"date":"2009-11-11",
"meal":"Breakfast",
"category":"BREAKFAST BAKERY",
"recipe":"213046",
"item":"Pistachio Muffin",
"Vegetarian":true,
"Vegan":false,
"Mollie Katzen":false,
"Local":false,
"Organic":false

}
]

We can get the data in CSV, JSON, or PHP format simply by requesting
a URL. CSV and JSON are familiar to you by now, but the PHP format
might be new. What we do is serialize the data, meaning we represent it
as a string even though it’s actually a hierarchical object or array. Then
we can send it over HTTP to someone who will then unserialize it to use
it in its original hierarchical form.

As a sidenote, if an object is passed to PHP’s serialize function, its
methods are not by default encoded. That prevents someone from in-
cluding a malicious script which a user might blindly execute by calling
unserialize. In this case, it doesn’t matter, since we’re simply sending
data across the wire.

3 Shuttleboy: Adding Ajax (61:00–95:00)

• We talked last time about the Shuttleboy application and its one major
shortcoming: it used a meta tag to add new content via a page refresh
every minute or less. This was a waste of resources because a lot of the
content on the page is static, yet it would have to be reloaded every single
time a page refresh was performed.4

4Not accounting for browser caching, anyway.

9

http://shuttleboy.cs50.net/

Computer Science 75
Fall 2009
Scribe Notes

Lecture 10: November 23, 2009
Andrew Sellergren

• One caveat was that David wanted users to be able to bookmark routes
for easy access. So data requests are done via GET rather than POST.
But more importantly, he didn’t want all of the data to be retrieved
via Ajax because this would mean the URL would never change. When
searching on Google Maps, for example, the URL never changes from
maps.google.com. You can, however, click the Link button on the upper
righthand corner so as to be provided with a so-called “deep link” that
saves the page state.

What are the downsides of Google’s approach? First, long URLs are un-
wieldy and may be broken when copying and pasting in an e-mail for
example. Second, the average user may not realize that he needs to
click on the Link button in order to get a URL he can bookmark. He
might instead click the bookmark shortcut in his browser and thus save
maps.google.com instead of his search.

• So to satisfy both desires—to use Ajax but to create URLs that can be
bookmarked—we resort to a trick that’s been around for a while. A frag-
ment identifier is a parameter in a URL which is separated from the others
by a #. If you have an element in a page foo.php with the name or id
attribute of bar, then a link to foo.php#bar will jump you straight to
that element in the page.

In the context of Ajax, however, we don’t care about this ability to jump
to different content. What we care about is the fact that we can append
fragment identifiers to the URL to provide extra information but without
fundamentally altering the URL. And using external libraries like YUI or
jQuery, we can use this extra information to maintain the page’s state.
Frankly, it’s a pain to implement across different browsers without an ex-
ternal library, so perhaps it’s not surprising that Google Maps has chosen
not to do this yet.

The YUI Browser History Manager listens for changes in the URL every
half second or so. When a change occurs, it parses the URL to grab
everything after the # and treat it as a GET string. It then updates the
page content accordingly. One of the big problems with this approach is
that the browser’s back button will usually break.

• If we open up Firebug and click the Console tab while examining a sched-
ule on Shuttleboy,5 we see that a request is being made to search.php
every five seconds or so. Previously, we were refreshing every 60 seconds,
but David found that when he made an Ajax request only every minute,
occasionally the client clock and the server clock would get out of sync
and requests would be missed. Refreshing every five seconds is acceptable
because eventually Google Maps will be integrated into the site to show
shuttle locations, so there will soon be a need to refresh that frequently
anyway.

5You need to choose two stops for any Ajax gets involved to refresh the schedule.

10

Computer Science 75
Fall 2009
Scribe Notes

Lecture 10: November 23, 2009
Andrew Sellergren

• For each of these requests, we can inspect the response headers (by clicking
the Response tab) to see that the Content-type of the response is actually
text/html. As empirical tests have shown, preparing XHTML server-side
and inserting it all in one chunk on the client-side is generally more efficient
than the standards-compliant approach of modifying and adding nodes in
JavaScript.
If we inspect the parameters that are sent with each request (by clicking
the Params tab), we see three: a and b, which designate stops, and output,
which designates the type of content to respond with. We can also inspect
the actual response by clicking on the Response tab and we see that it is
an XHTML table. This table is assigned as the value of the innerHTML of
the righthand div.

• The major downside of adding Ajax to Shuttleboy is that our servers
will experience a great deal more load per user. Each user will now be
making a request to our servers every five seconds. We could, of course,
limit the amount of content that each of these requests generates—not
downloading the entire table each time, for example—but no matter what,
we’ll probably have a higher load on our servers.
We learned this firsthand when we developed an office hours sign-up tool
using Ajax which crippled our servers because the refresh rate was too
high. We had to go back to a whiteboard eventually.
To view this load, we can run the top Linux utility to see all the current
running processes. If a number of different httpd processes are eating up
our CPU, we have a good idea that too many requests are being funneled
through too few processes, causing them to choke and back up. You should
be so lucky as to have your website slashdotted someday.

• Question: to better handle the increased load and perhaps reject some
users who might push your servers over the edge, you could throttle net-
work traffic at the router level or balance it across multiple servers with a
load balancer.

• Question: each of the httpd processes is actually a thread that forked off
the original httpd process at startup. The maximum number of threads
that are forked off is an Apache configuration option.

• Question: unfortunately, it’s not possible in JavaScript to determine if a
user has minimized his window. And you certainly can’t tell if he’s not
paying attention, so it wouldn’t be possible to stop the Ajax updating
when the user was idle.

• Question: sure, updating the page’s content automatically for a user might
run contrary to the way the web used to work, but frankly the generation
which is up-and-coming is already accustomed to sites like Facebook and
Twitter doing so. Some users might forcibly refresh pages, but that’s
fine—the site’s still going to work like it’s supposed to.

11

http://en.wikipedia.org/wiki/Slashdot_effect

	Announcements (0:00–2:00)
	The HarvardFood API: Underneath the Hood (2:00–61:00)
	Examining the Data
	Extracting the Data
	Using the Data

	Shuttleboy: Adding Ajax (61:00–95:00)

