
Computer Science 75
Fall 2009
Scribe Notes

Lecture 1: September 14, 2009
Andrew Sellergren

Contents

1 HTTP (0:00–30:00) 2

2 Apache and Web Server Configuration (30:00–45:00) 5

3 Administrative Details (45:00–50:00) 7

4 More with Apache (50:00–70:00) 7

5 PHP (70:00–104:00) 8
5.1 Forms . 8
5.2 About PHP . 11
5.3 Reimplementing Google (Again) 13

1

Computer Science 75
Fall 2009
Scribe Notes

Lecture 1: September 14, 2009
Andrew Sellergren

1 HTTP (0:00–30:00)

• What is HTTP, exactly? Not to be confused with httpd, the HTTP
daemon, the Linux software which implements it, HTTP is the actual
protocol or set of standards which dictates how web browsers communicate
with web servers and vice versa. You can think it like a conversation
between two people which begins with a handshake, just as, in fact, a
HTTP conversation does.

• Recall from last time our discussion of the virtual envelope which is sent
from browser to server. Inside the envelope is the actual HTTP request,
which might look like the following:

GET /index.html HTTP/1.1

Additionally, we can send parameters using this GET syntax if the data is
short and not sensitive. If we want to send longer or more private data,
we use POST. For example, if we want to return a dynamic page, we might
structure our request like so:

GET /foo.php?x=y&z=w HTTP/1.1

In this way, we can influence the behavior of foo.php based on those
variables which we passed.

• Note that you can pass an array via GET using the following syntax:

GET /foo.php?foo[]=x&foo[]=y HTTP/1.1

It’s ugly, but it works. For the purposes of this class, we’ll be mostly
working with simple GET strings.

• The speed of the transaction is influenced by the number of parameters
which are passed, but only minimally given how much other data is passed
via the headers.

• There’s no standard maximum length for URLs, but 1024 characters is a
good rule of thumb.

• To view what’s actually being passed across the wire, we can use Live
HTTP Headers, a plugin for Firefox. Check out our other recommenda-
tions on the Software page.

• As Live HTTP Headers will show, even a visit to the course website spawns
dozens of requests. This large number of requests, however, can be con-
sidered conservative compared to sites like CNN. The increasing desire for
dynamic websites can prove costly when a large portion of users are now
browsing the web on mobile devices that tend to be much slower in serving
up these requests.

2

http://www.cs75.net/software/

Computer Science 75
Fall 2009
Scribe Notes

Lecture 1: September 14, 2009
Andrew Sellergren

• Accessing google.com while Live HTTP Headers is open will capture the
following:

GET / HTTP/1.1
Host: google.com
User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10.5; en-US; rv:1.9.1.3)...
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
Cookie: PREF=ID=44056...

The first GET string is, as we mentioned previously, the core of the request.
We’ll come back to the Host line. The User-Agent string can be useful,
but shouldn’t be relied upon. It can be forged or scrubbed, so it’s not a
good idea to have functionality which depends upon it in order to execute.
There’s a feature of Safari, for example, which allows one to specify which
browser will be used to fill in this header field.

• The Accept field is a comma-separated list of file types that the browser is
willing to receive in response to the request. The other Accept-Language
field is pretty self-explanatory. Accept-Encoding here specifies that the
browser is willing to use compression when talking to the webserver. This
is a great way to save bytes! The rest of the fields we’ll gloss over, with
the exception of the Cookie field, which we’ll come back to.

• So what was the server’s response? Google spit out a HTTP 301 message,
meaning “Moved Permanently”:

HTTP/1.x 301 Moved Permanently
Location: http://www.google.com/
Content-Type: text/html; charset=UTF-8
Date: Wed, 14 Oct 2009 04:41:16 GMT
Expires: Fri, 13 Nov 2009 04:41:16 GMT
Cache-Control: public, max-age=2592000
Server: gws
Content-Length: 219
X-XSS-Protection: 0

We can see that via the Location field, Google has actually caused the
browser to redirect to a different URL, one that has been prepended with
www and appended with a trailing slash.

• Now that we’re talking about dynamic websites, it will be important to
pay attention to the Cache-Control field, which specifies how long a page

3

Computer Science 75
Fall 2009
Scribe Notes

Lecture 1: September 14, 2009
Andrew Sellergren

can be cached. After all, we want to make sure that the user has the most
recent version of our site. Unfortunately, caching is one of the first issues
which causes cross-browser difficulties. We’ll have to turn to copying and
pasting a few lines of code which control caching on multiple browsers
since not all of them agree on the syntax for doing so.

• If we scroll down, we can see that the second request was met with this
response:

HTTP/1.x 200 OK
Date: Wed, 14 Oct 2009 04:41:16 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=UTF-8
Content-Encoding: gzip
Server: gws
Content-Length: 3511
X-XSS-Protection: 0

HTTP 200 is an invisible error code of sorts. We’ve all seen HTTP 404,
which means “File Not Found.” HTTP 401 means “Unauthorized,” and
points to a probable file permissions problem. HTTP 500 is “Internal
Server Error.” You’ll see this error most often with a misconfigured
.htaccess file. HTTP 200, however, means “OK.”

• What was actually returned by the server was the content—the default
page for this directory. After that, several more requests were spawned to
retrieve the Google logo, some JavaScript and CSS, etc. Google is actually
pretty minimalistic in this regard—many other websites have hundreds of
requests which cause mobile browsers, among others, to grind to a crawl.

• Question: with Live HTTP Headers, how can you differentiate between re-
quests and responses? A thin dashed line separates each request-response
pair.

• The Keep-Alive header field is an improvement which allows multiple re-
quests to go over the same TCP/IP socket connection. A value of 300,
for example, specifies that the socket should remain open for 300 seconds.
Toggling configuration options like this can have huge performance gains,
especially in the context of database communication, if you know what
you’re doing.

• Question: does sourcing images in CSS files save bytes? Not really. There
are tricks whereby developers can aggregate all images into a single image
file which can be parsed or selectively displayed using JavaScript and CSS.
This allows all images to be downloaded in a single request, which should
save download time.

4

Computer Science 75
Fall 2009
Scribe Notes

Lecture 1: September 14, 2009
Andrew Sellergren

• Question: if a single background image is being repeated over and over
again, it will only be downloaded once.

2 Apache and Web Server Configuration (30:00–45:00)

• It’s time we learned a little more about the brand of web server we’ll be
using most frequently in this course. The advantages of Apache begin
with its being both free and open-source. While IIS (Internet Information
Services), the Microsoft-brand web server, offers similar functionality, it
simply ain’t cheap. We’re going to abstain from most of the religious
debates surrounding Microsoft vs. non-Microsoft products, but suffice it
to say that we’re voting with our wallets at least in this case.

• For the most part, cs75.net comes pre-packaged for you, so you won’t
need to do much configuration. Occasionally, however, you’ll find it useful
to consult the Apache manual so that you can tweak certain configura-
tion options (which we’ve enabled you to do) in .htaccess files. In a
.htaccess file, for example, you can accomplish what Google did with its
URL rewriting—namely redirecting google.com to www.google.com.

• If all of your websites are being hosted on our course server, then all
requests will contain the same IP address. How will it know which website
to spit out? Thanks to virtual hosting, a feature offered by Apache (and
also IIS), the request will contain not only an IP address, but also a single
line of text in the HTTP header that represents what the user actually
typed into the address bar. It might say, for example, Host: foo.com. We
saw this earlier while using Live HTTP Headers.

• The configuration file for Apache is httpd.conf. Its location on servers
varies, but it is commonly found in the /etc/ directory. Below you’ll
see an excerpt from the course server’s configuration file which configures
virtual hosting:

<VirtualHost 64.131.79.130:80>
ServerName www.malanrouge.com
ServerAlias www.malanrouge.com malanrouge.com
ServerAdmin webmaster@malanrouge.com
DocumentRoot /home/malan/domains/malanrouge.com/public_html

SuexecUserGroup malan malan
CustomLog /var/log/httpd/domains/malanrouge.com.bytes bytes
CustomLog /var/log/httpd/domains/malanrouge.com.log combined
ErrorLog /var/log/httpd/domains/malanrouge.com.error.log

<Directory /home/malan/domains/malanrouge.com/public_html>
Options All
suPHP_Engine ON

5

Computer Science 75
Fall 2009
Scribe Notes

Lecture 1: September 14, 2009
Andrew Sellergren

suPHP_UserGroup malan malan
</Directory>

</VirtualHost>

This is an excerpt from a very large text file which is actually composed
of multiple smaller files. Notice that it’s somewhat similar to an XML file
in that it has open and close tags, simply by convention. The IP address
at the top is that of the course’s server. What’s the significance of the 80
after the IP address at the top? This is a port number which corresponds
to web traffic. We’re saying to the server: listen for web traffic at this IP
address on this specific port number.

• Notice that next to ServerAlias we’re specifying that the web server
should respond the same to requests for www.malanrouge.com and
malanrouge.com. The other piece of the puzzle is that both these host-
names need DNS entries that point them to the same IP address.

• ServerAdmin isn’t so important except in the case that the webpage fails
completely to load, in which case the webmaster’s e-mail address will be
displayed by default.

• The DocumentRoot line is important to dissect. This is where the actual
mapping of a domain name to a file directory takes place. In this case,
we’re telling the web server that the files for this domain name are located
in the public_html subdirectory of the malanrouge.com directory. In
fact, this naming convention for the directories was actually generated
automatically by DirectAdmin, which makes it easy to administer multiple
domains from a single account.

• The lines beginning with CustomLog and ErrorLog are, as you might ex-
pect, setting various logging options but aren’t too important to examine.

• Within the Directory tag, you can see that we’ve waved our hands at the
options by simply turning them all on by default (some examples include
following symbolic links or viewing the contents of a web directory). This
is what allows you to override default options in your .htaccess files.

• Question: if you wanted to keep an extra directory in the URL and house
all your website’s content in that subdirectory, you need only have a simple
RewriteRule in your .htaccess file to redirect all traffic from the root
directory to that subdirectory. Via the .htaccess file, you can also hide
file extensions in URLs so that if you want to change the language you
implement your site in, you won’t have to fuss over changing all the URLs.
The Panel, in fact, uses a RewriteRule to redirect you to port 2222 so
that you don’t have to remember it.

• If you need to view the server logs, you can do so by logging into the Panel
and clicking on Site Summary.

6

Computer Science 75
Fall 2009
Scribe Notes

Lecture 1: September 14, 2009
Andrew Sellergren

• Question: almost all web hosting companies utilize virtual hosting. If you
happen to want multiple domain names for the same account, you can pay
a little extra for it.

3 Administrative Details (45:00–50:00)

• Sid will be hosting the first live section after class in Room 103. We realize
this makes for a long night, but at least it cuts down your commuting
requirements. There will also be a weekly online section held using the
Elluminate software.

• Know that there’s a course bulletin board run using the Simple Machines
Forum software, which happens to be written in PHP and MySQL. This
allows us to anonymize your names so that you can post any question
without fear of looking silly! Please reserve questions which require sharing
a large chunk of code for the e-mail list, but feel free to post questions of
a general nature. You can also subscribe to the bulletin board via RSS so
that you don’t have to constantly check for new posts.

4 More with Apache (50:00–70:00)

• Let’s see what we can do via the .htaccess file. If we navigate to
malanrouge.com, we can see that the URL gets rewritten to have the
www prepended. We do this with the following lines:

RewriteEngine On
RewriteCond %{HTTP_HOST} !^www\.malanrouge\.com$ [NC]
RewriteRule (.*) http://www.malanrouge.com/$1 [R=301,L]

What do these lines of code actually do? The first line is going to turn on
the rewrite engine, as you might have guessed. The second line is a con-
dition for rewriting: “If the host is not equal to www.malanrouge.com...”
The ! or bang means “not,” the ^ means “starts with,” and the $ means
“ends with.” The NC means “not case,” or rather case-insensitive. Finally,
the third line: “...put everything after http://www.malanrouge.com.”
Here, the (.*) stands for “everything after the first forward slash,” which
by convention is stored in a variable called $1. Then, it will tack this on
the end of the full web address and spit out a 301 “Moved Permanently”
header (hence the R=301). The ,L means “this is the last rewrite rule.”

• The %{HTTP_HOST} is Apache’s syntax for variable names, a list of which
is available in the Apache documentation.

• HTTP 301 is “Moved Permanently” while HTTP 302 is “Moved Temporarily”—
the former will be remembered by the browser while the latter won’t. This
was a distinction which became important when we briefly housed the
course website at a temporary subdomain and used HTTP 301 instead

7

http://cs75.net/bb
http://httpd.apache.org/docs/2.2/

Computer Science 75
Fall 2009
Scribe Notes

Lecture 1: September 14, 2009
Andrew Sellergren

of HTTP 302. Google happened to store this result and from then on
we were forced to keep this temporary subdomain alive so that it could
redirect to the real website.

• To go the other direction,—to remove the www from a URL—we could
remove the ! from the RewriteCond and the www from the RewriteRule.
Walk through the logic yourself to see how this would work.

• The backslashes in front of the dots are the escape characters, which, in
the context of these regular expressions, signals the engine to treat the dots
as literal dots. Otherwise, by convention of regular expression syntax, the
dots are placeholders for any character.

• We can even redirect users to a website that’s not on our domain, if we so
desire. The Apache module which makes all this possible is mod_rewrite.

• On the course website, we redirect users to the SSL-protected areas of the
website using the Apache variable %{HTTPS}.

• Multiple RewriteCond lines will be combined together with the AND oper-
ator so that they must all be met for a given RewriteRule to be executed.

• A lot of URL rewriting is done by the browser these days. The http://
is added by most browsers for example. Even ISPs have a hand in it.
They’ve gotten a lot of flak in the geek community for redirecting users
that make typos in URLs to sites that have advertisements on them.

• Question: we’ll come back to this, but know that SSL requires a unique
IP address, so virtual hosting with SSL isn’t a possibility.

• How can you run Apache on your own computer? As we mentioned last
time, XAMPP is an extremely useful software bundle that will allow you
to develop on your home machine, even without an internet connection.
Check out the installation directions here which were created by Keito
Uchiyama, a former teaching fellow. Later in the semester, we will also
offer a virtual machine package configured like the CS 75 server.

5 PHP (70:00–104:00)

5.1 Forms

• Forms are what allow us to take user input—via GET or POST strings—and
generate dynamic content—in fact, this is what all user-drive websites boil
down to. Here are some of the types of forms we’ll be implementing this
semester:

– Text Fields

<input name="email" type="text" />

8

http://www.keitr.com/tutorials/xampp

Computer Science 75
Fall 2009
Scribe Notes

Lecture 1: September 14, 2009
Andrew Sellergren

– Password Fields

<input name="password" type="password" />

– Hidden Fields

<input name="id" value="123" />

– Checkboxes

<input checked="checked" name=remember" type="checkbox" />

– Radio Buttons

<input name="gender" type="radio" value="F" />
<input name="gender" type="radio" value="M" />

– Drop-Down Menus

<select name=state">
<option value=""></option>
<option value=MA"></option>
<option value=NY"></option>

</select>

– Text Areas

<textarea name=comments"></textarea>

Text fields are pretty self-explanatory. Password fields are the same except
they show text as bullets instead of actual characters (but don’t really
provide much more security). Hidden fields allow data to be sent without
being easily visible to or changeable by the user. Don’t mistake this for a
security measure, however, because anyone with a modicum of technical
savvy will be able to manipulate the values of these fields. It wouldn’t be
a good idea to store the prices of items in hidden fields, for example.

• Checkboxes are fairly straightforward. Radio buttons are the same except
mutually exclusive. Drop-down menus and text areas, we’ll mention just
briefly.

• Let’s examine the source code for Google’s home page. If we boil it down
to just the form elements, we are left with the following:

<form action="/search" name=f>
<input name=hl type=hidden value=en>
<input autocomplete="off" maxlength=2048

name=q size=55 title="Google Search" value="">

<input name=btnG type=submit value="Google Search">
<input name=btnI type=submit value="I’m Feeling Lucky">
</form>

9

Computer Science 75
Fall 2009
Scribe Notes

Lecture 1: September 14, 2009
Andrew Sellergren

For all practical purposes, this is all it takes to implement Google search
on the front end! Notice that this isn’t valid XHTML because they don’t
have quotation marks surrounding a lot of their attribute tags. However,
consider that those extra few quotation marks would probably cost them
billions of bytes per day.

• The only input that’s really worth mentioning is the text field that contains
the user’s query. The name of this input field is simply q.

• So let’s re-implement Google on our own site. All we need are the following
lines:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>Fake Google</title>
</head>
<body>

<form action="/search" method="get">
<input type="text" name="q" value="" />

<input type="submit" value="Fake Google Search" />
<input type="submit" value="I’m Feeling Lucky" />

</form>
</body>
</html>

If we save this as google.html and then try to access it on our own server,
we encounter a problem. We get an HTTP 403 error. That’s because we
didn’t make our file world-readable. We need to execute the following
command:

chmod 644 google.html

If you use DirectAdmin to upload your files, you can set the permissions
via their GUI as well.

• Now let’s dress it up a bit:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

10

Computer Science 75
Fall 2009
Scribe Notes

Lecture 1: September 14, 2009
Andrew Sellergren

<title>Fake Google</title>
</head>
<body>

<div align="center">
<h1>Fake Google</h1>

<form action="/search" method="get">
<input type="text" name="q" value="" />

<input type="submit" value="Fake Google Search" />
<input type="submit" value="I’m Feeling Lucky" />

</form>
</div>

</body>
</html>

Unfortunately, it’s still broken. When you click Submit, we get an HTTP
404 error. What we need to do is change the action attribute of our form
to the following:

<form action="http://www.google.com/search" method="get">

Google seems to accept requests that don’t originate from their own do-
main. If we change the method attribute to POST, however, we get an error
since Google has disallowed this, for whatever technical reason.

5.2 About PHP

• Unlike C or C++ or other compiled languages, PHP is an interpreted
language. This means that the server will pass your PHP files to the PHP
interpreter, which will execute your scripts and serve the output to the
browser.

• Our study of PHP will focus not on the quirks of its syntax, but moreso on
the conceptual underpinnings of the language itself. Know that the online
documentation for PHP is your best friend! For functions, it provides not
only information on return values and arguments, but also examples of
their usage.

• On our course server, we have also installed suPHP for security reasons.
suPHP stands for Superuser PHP, which is simply an allusion to the Linux
notion of a user who has root permissions. What suPHP requires is that
when a user executes code on the server, he does so as the owner of that
file. The alternative is that every user executes code as the same user like
nobody or apache. This alternative has two major problems associated
with it: first, if the web server is shared, then anyone else who has access to
it will be able to read your code and thus potentially steal your intellectual
property since your files will have to be world-readable; second, if a user

11

http://php.net
http://php.net

Computer Science 75
Fall 2009
Scribe Notes

Lecture 1: September 14, 2009
Andrew Sellergren

uploads personal files whose location is discovered by a malicious user,
this malicious user actually has permissions to read and delete those files.
suPHP addresses these problems by isolating users.

• For those who have prior programming experience, the PHP Language
Reference may prove a useful tool for introducing the syntax conventions
of PHP. For those with no prior programming experience, it can also be
useful as an in-depth look at some fundamental programming concepts.

• Variables in PHP are loosely typed. This means that you don’t have to
specify a variable’s type when declaring it. However, variables do have
types associated with them in case you want to do an explicit conversion
or cast between types. For example, all user input from forms is passed
as strings, so you can cast it to an integer if you so desire.

• In PHP, there’s a trade-off between the cleanliness of code and the speed
with which it can be implemented. You may find yourself writing some-
what sloppy code (although PHP does provide you with the ability to
define classes and organize your programs very rigidly), but realize that
this might be a sacrifice worth making in the interest of getting something
up and running very quickly and easily.

• Variables in PHP begin with $, as has already become obvious. The
following types exist in PHP:

– boolean

– integer

– float

– string

– array

– object

– resource

– NULL

– mixed

– number

– callback

• One other useful piece of reading material is the Explication of References.
References are a way of passing variables using a construct somewhat
similar to pointers. If you have very little prior programming experience,
don’t worry so much about this.

12

http://us2.php.net/manual/en/langref.php
http://us2.php.net/manual/en/langref.php
http://us2.php.net/manual/en/language.references.php

Computer Science 75
Fall 2009
Scribe Notes

Lecture 1: September 14, 2009
Andrew Sellergren

• PHP code is stored simply in a text file which begins with the tag <?php
or <? (if the server is configured to interpret short tags via the php.ini
file) and ends with the tag ?>.

• PHP has a special set of variables called superglobals which allow you to
access user input which has been submitted via forms as well as a whole
slew of other useful data. Here’s a list of superglobals:

– $_COOKIE

– $_ENV

– $_FILES

– $_GET

– $_POST

– $_REQUEST

– $_SERVER

– $_SESSION

5.3 Reimplementing Google (Again)

• Let’s write a file called search.php and put the following lines of code in
it:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>

<title>Fake Google</title>
</head>
<body>

hello, world

</body>
</html>

Notice that all of this code is just XHTML—none of it is PHP. PHP files,
however, can have XHTML within them.

• Now we’ll set the action attribute of our Fake Google search page to be
search.php. When we click Submit, we’ll see “hello, world” displayed in
our browser.

• Now let’s see if we can access the user’s query:

13

Computer Science 75
Fall 2009
Scribe Notes

Lecture 1: September 14, 2009
Andrew Sellergren

<?php

print($_GET["q"]);

?>

We have to make sure, of course, that the method attribute of our form is
specified as GET. Now the user’s query will be printed out to the browser
window.

• Let’s add another parameter to the search page:

<input type="checkbox" name="random" value="yes" />Click me for random

We can see that this second field will be appended to the URL when we
click Submit. We can print out this second form value like so:

<?php

print($_GET["q"]);
print("
";
print($_GET["random"]);

?>

We can accomplish the same thing by interspersing XHTML and PHP:

<?php print($_GET["q"]); ?>

<?php print($_GET["random"]); ?>

• If we want to see all of the contents of $_GET or even $_SERVER, we can
use the print_r function.

• PHP also has arrays, an extremely useful data structure which pairs keys
with values, and loops, a construct which allows chunks of code to be
repeated multiple times.

14

	HTTP (0:00–30:00)
	Apache and Web Server Configuration (30:00–45:00)
	Administrative Details (45:00–50:00)
	More with Apache (50:00–70:00)
	PHP (70:00–104:00)
	Forms
	About PHP
	Reimplementing Google (Again)

